Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks

Abstract

One of the challenges in modeling cognitive events from electroencephalogram (EEG) data is finding representations that are invariant to inter- and intra-subject differences, as well as to inherent noise associated with such data. Herein, we propose a novel approach for learning such representations from multi-channel EEG time-series, and demonstrate its advantages in the context of mental load classification task. First, we transform EEG activities into a sequence of topology-preserving multi-spectral images, as opposed to standard EEG analysis techniques that ignore such spatial information. Next, we train a deep recurrent-convolutional network inspired by state-of-the-art video classification to learn robust representations from the sequence of images. The proposed approach is designed to preserve the spatial, spectral, and temporal structure of EEG which leads to finding features that are less sensitive to variations and distortions within each dimension. Empirical evaluation on the cognitive load classification task demonstrated significant improvements in classification accuracy over current state-of-the-art approaches in this field.

Date
Feb 27, 2024 3:00 PM — 4:00 PM
Event
EMIL Spring'24 Seminars
Location
Health Futures Center, ASU
Nooshin Taheri Chatrudi
Nooshin Taheri Chatrudi
Graduate Teaching Assistant

I am a Ph.D. student at the College of Health Solutions, Arizona State University (ASU). Currently, I am working under the supervision of Dr. Hassan Ghasemzadeh at the Embedded Machine Intelligence Lab (EMIL). My research interests include machine learning, clinical informatics, and health monitoring system development.