Counterfactual Explanations for Multivariate Time Series

Abstract

Multivariate time series are used in many science and engineering domains, including health-care, astronomy, and high-performance computing. A recent trend is to use machine learning (ML) to process this complex data and these ML-based frameworks are starting to play a critical role for a variety of applications. However, barriers such as user distrust or difficulty of debugging need to be overcome to enable widespread adoption of such frameworks in production systems. To address this challenge, we propose a novel explainability technique, CoMTE, that provides counterfactual explanations for supervised machine learning frameworks on multivariate time series data. Using various machine learning frameworks and data sets, we compare CoMTE with several state-of-the-art explainability methods and show that we outperform existing methods in comprehensibility and robustness. We also show how CoMTE can be used to debug machine learning frameworks and gain a better understanding of the underlying multivariate time series data.

Date
Oct 5, 2023 1:00 PM — 1:40 PM
Event
EMIL Fall'23 Seminars
Location
Online (Zoom)
Asiful Arefeen
Asiful Arefeen
Graduate Research Assistant

I am a PhD student at Arizona State University (ASU). I am working under the supervision of Professor Hassan Ghasemzadeh at the Embedded Machine Intelligence Lab (EMIL). My research topics include machine learning, health monitoring system development and mobile health. I received my B.S. in Electrical and Electronic Engineering from Bangladesh University of Engineering & Technology (BUET) in 2019.