CyHOP: A generic framework for real-time power-performance optimization in networked wearable motion sensors

Abstract

CyHOP is a generic framework for real-time power-performance optimization in networked wearable systems. Power consumption is a major obstacle in designing stringent resource constraint wearables. Several system-level design considerations contribute to energy consumption of these systems which must be taken into account while designing the system. We propose a power-performance optimization framework, namely CyHOP (Cyclic and Holistic Optimization framework), for connected wearable motion sensors. While existing work focus solely on one design parameter, our approach globally trades-off the performance of activity recognition and power consumption. CyHOP is capable of optimally adjusting the system to fulfill specific application needs. Using a smoothing technique, the initial multi-variate non-convex optimization problem is reduced to a convex problem and solved using our devised derivative-free optimization approach, namely, cyclic coordinate search.

Publication
International Conference on Computer Design (ICCD), 2016
Ramin Fallahzadeh
Ramin Fallahzadeh
Graduate Alumni

Graduate Research Assistant.

Hassan Ghasemzadeh
Hassan Ghasemzadeh
Director

Hassan Ghasemzadeh is an Associate Professor of Biomedical Informatics at Arizona State University (ASU) and a Computer Science Adjunct Faculty at Washington State University (WSU).