
Proximity-Based Active Learning for Eating Moment
Recognition in Wearable Systems

Marjan Nourollahi

Washington State University

Pullman, WA, USA

m.nourollahidarabad@wsu.edu

Seyed Ali Rokni

Washington State University

Pullman, WAcountryUSA

alirokni@eecs.wsu.edu

Parastoo Alinia

Washington State University

Pullman, WA, USA

parastoo.alinia@wsu.edu

Hassan Ghasemzadeh

Washington State University

Pullman, WA, USA

hassan@eecs.wsu.edu

ABSTRACT

Detecting when eating occurs is an essential step toward automatic

dietary monitoring, medication adherence assessment, and diet-

related health interventions. Wearable technologies play a central

role in designing unobtrusive diet monitoring solutions by leverag-

ing machine learning algorithms that work on time-series sensor

data to detect eating moments. While much research has been done

on developing activity recognition and eating moment detection

algorithms, the performance of the detection algorithms drops sub-

stantially when the model is utilized by a new user. To facilitate the

development of personalized models, we propose PALS
1
, Proximity-

based Active Learning on Streaming data, a novel proximity-based

model for recognizing eating gestures to significantly decrease the

need for labeled data with new users. Our extensive analysis in

both controlled and uncontrolled settings indicates F-score of PALS

ranges from 22% to 39% for a budget that varies from 10 to 60 queries.

Furthermore, compared to the state-of-the-art approaches, off-line

PALS achieves up to 40% higher recall and 12% higher F-score in

detecting eating gestures.

CCS CONCEPTS

• Computing methodologies → Active learning settings; •

Human-centered computing→Ubiquitous andmobile com-

puting design and evaluation methods.

KEYWORDS

Machine learning, mobile health, eating detection, active learning,

wearable computing

1
Software code for PALS is available online at https://github.com/marjan-

nourollahi/PALS

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Toronto ’20, June 19–21, 2020, Toronto, Canada
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

ACM Reference Format:

MarjanNourollahi, SeyedAli Rokni, ParastooAlinia, andHassanGhasemzadeh.

2020. Proximity-Based Active Learning for Eating Moment Recognition in

Wearable Systems. In Toronto ’20: ACM Workshop on Wearable Systems and
Applications, June 19–21, 2020, Toronto, Canada. ACM, New York, NY, USA,

6 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Eating habits are highly correlated with human health [6]. Not only

what people eat, but also when and how often eating events occur

contributes to their health [9]. An automatic health monitoring

system helps with monitoring eating habits and accommodating

users with special health conditions such as diabetes [7] and those

with certain dietary plans [3]. Therefore, eating moment detection

is an important factor in automatic health monitoring.

Recent eating moment recognition approaches require multiple

on-body sensors or specialized devices [1, 2], which make them

impractical for everyday use. This research develops a machine

learning model that uses easy-to-wear and prevalent wearable de-

vices such as smartwatches for eating moment detection.

Cross-subject pattern variations while performing the same ac-

tivity causes pre-trained machine learning models not to achieve

desirable accuracy when used on the new subjects without collect-

ing large labeled training data. This problem becomes even more

challenging in real-life scenarios as the user’s pattern in performing

activities deviates significantly from the ones performed in the lab

settings. A potential approach is to collect ground truth labels in

real-life scenarios is to continuously record user’s activities using

body-worn cameras. However, deploying cameras in uncontrolled

settings impose privacy concerns. Therefore, it is critical to de-

velop strategies that allow for collecting ground truth labels outside

laboratory settings.

Active learning is an approach to query sensor data for ground

truth labels in end-user settings. It allows us to query a small subset

of sensor data based on an informativeness measurement [10] and

yet achieve an acceptable accuracy level. However, in mobile health

using streaming data, the sensors are sampled in real-time and a

decision about querying or skipping a data segment needs to be

made instantaneously. To address the problem of activity learning

with streaming sensor data, we propose PALS as a proximity-based

active learning approach for eating moment recognition. We in-

troduce PALS to improve the performance of the model with less

7

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3396870.3400011&domain=pdf&date_stamp=2020-06-19


Toronto ’20, June 19–21, 2020, Toronto, Canada Nourollahi et al.

labeled data while leveraging unlabeled data for model training.

Inspired by graph-based semi-supervised learning research [12, 13],

our approach utilizes unlabeled data to improve the quality of the

model. To the best of our knowledge, PALS is the first attempt to

develop a practical approach for eating moment detection using

an active learning framework for human-in-the-loop learning on

streaming sensor data.

2 PROBLEM STATEMENT

Let X denote a large set of collected sensor data. An observation

xi made by a wearable sensor at time 𝑖 can be represented as a

𝐷-dimensional feature vector, xi = {𝑤𝑖1,𝑤𝑖2, . . . ,𝑤𝑖𝐷 }. Each feature

is computed from a given time window and a marginal probability

distribution over all possible feature values. The activity recogni-

tion task is composed of a label spaceA={𝑎1, 𝑎2, . . . , 𝑎𝑚 } consisting

of the set of labels for activities of interest, and a conditional proba-

bility distribution 𝑃 (A|xi) which is the probability of assigning a

label 𝑎 𝑗 ∈ A given an observed instance xi. Subsequently, the final
predicted label for observation xi is defined as

𝑓 (xi) = argmax

aj∈A
P(aj |xi) (1)

Although, given the growing ubiquity of Internet-of-Things (IoT)

sensors, collecting a large pool of unlabeled sensor data is attainable,

labeling such a huge amount of data using human supervision

is time-consuming, burdensome, and expensive. Therefore, it is

important to devise an efficient approach for selecting informative

instances taking into account the constraint of a limited budget

to query an expert for ground truth labels. Furthermore, because

the sensors are sampled continuously as the user performs various

daily activities, the active learning algorithm needs to select sensor

data for query in real-time. The reason for such a constraint is that

expecting the user/expert to provide true labels for activities that

occurred in the past is subject to human memory and bias errors.

Therefore, it is desirable to decide if a query needs to be issued for

the currently occurring activity. In this section, we formally define

active learning as an optimization problem.

2.1 Limited Budget Training

To approach the problem of active learning given both budget and

real-time decision making constraints, we first relax the second

constraint by assuming that a human expert can label a pool of

sensor data collected in the past by either remembering the activities

or watching a video recording of the activities. This allows us to

develop a basic pool-based active learning algorithm that selects

most informative instances from a large pool of the collected sensor

data. In the next step, we show how the pool-based algorithm can

be modified for realizing real-time active learning scenarios where

a decision about querying the expert is made instantaneously. In

the following, we formulate each of the problems and present our

solution to solve those problems. Problem 1 formally defines the

limited budget active learning problem.

Problem 1 (Limited Budget Training (LBT)). Assume an
active learning algorithm splits the instances in X into two disjoint
subsets 𝑙 and𝑈 where the instances in 𝑙 are used to query the oracle
to obtain their true labels and those in 𝑈 remain unlabeled. The
Limited Budget Training (LBT) problem is to efficiently construct the

small subset 𝑙 and train a classifier such that the error of classifying
instances in X is minimized and the size of 𝑙 is bounded by a given
query budget of Δ.

The LBT problem described in Problem 1 can be formulated as

follows.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

|X|∑
𝑖=1

( |𝑓 (xi) − yi |) (2)

|𝑙 | ≤ Δ (3)

𝑙 ∪𝑈 = X (4)

𝑙 ∩𝑈 = ∅ (5)

The objective function in (2) aims to minimize the amount of

misclassification error given the budget constraint in (3). The con-

straints in (4) and (5) are based on the definition where 𝑙 and𝑈 are

considered a perfect partitioning of set X.
As described in Problem 1, due to limited budget constraints,

designing an efficient method to cherry-pick instances to feed the

training process is essential. Here, Definition 1 formally defines the

instance selector function.

Definition 1 (Instance Selector). An instance selector I is
a function I : X → {0, 1} such that

I =

{
1, if xi ∈ l
0, otherwise

(6)

where 𝑥𝑖 refers to the instances selected for the query. Considering

that the active learning algorithm uses the instance selector I, the
Problem 1 could be re-formulate as an Integer Linear Programming

problem as follows.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

|X|∑
𝑖=1

(1 − I(𝑖)) |𝑓 (xi) − yi | (7)

|X|∑
𝑖=1

I(𝑖) = Δ (8)

The objective function in (7) aims to minimize the amount of

misclassification error on unknown instances while (8) states the

budget constraint.

A major limitation of the LBT problem described above is that

it assumes perfect memory retention for the oracle. That is, the

oracle can remember past events reliably. In reality, however, mobile

health technologies monitor end users continuously and the user

may not remember past events. Therefore, it is more realistic to

design an active learning approach for streaming sensor data. In

the following, we reformulate Problem 1 taking into account that

the oracle provides labels for current activity. Problem 2 formally

defines the problem of training with a limited budget on a stream

of data.

Problem 2 (Limited Budget Training onData Stream (LBTS)).

Let X=[𝑥1, 𝑥2, . . . , 𝑥𝑡 , . . . , 𝑥𝑇 ] be a sequence of sensor instances that
are being produced during time frame 𝑡= {1, . . . , 𝑇 }. An active learn-
ing algorithm on stream splits the instances in X into two disjoint
subsequences 𝑙 and𝑈 where the instances in 𝑙 are used to query the
oracle to obtain their true label and update the model as they become
available in real-time while𝑈 remain unlabeled. The Limited Budget
Training on Stream(LBTS) is to efficiently decide whether to query
the true label for the instance at time 𝑡 and update the classifier as

8



Proximity-Based Active Learning for Eating Moment Recognition in Wearable Systems Toronto ’20, June 19–21, 2020, Toronto, Canada

it becomes available in real-time such that the error of classifying
instances in 𝑈 is minimized.

Using Linear Programming framework in (7), the problem of

limited budget training on data stream could be formulated as

follows.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑇∑
𝑡=1

(1 − I(𝑡 )) |𝑓𝑡 (xt) − yt | (9)

𝑇∑
𝑡=1

I(𝑡 ) = Δ (10)

where 𝑓𝑡 is the classification function at time 𝑡 . The objective

function in (9) aims to minimize the amount of misclassification

error given the budget constraint in (10).

3 PALS FRAMEWORK DESIGN

PALS framework focuses on two characteristics of everyday living

situations: (1) the ubiquity of data and the ability to obtain huge

amounts of unlabeled data with mobile devices and wearable sen-

sors; and (2) realistic assumption that the user/expert has a limited

capability or interest in providing ground truth labels for the mas-

sive amounts of data that are being collected in continuous health

monitoring applications. Therefore, the general goal of the PALS

framework is to leverage the unlabeled data to construct an efficient

model while choosing a small subset of instances of the unlabeled

data to query the user/expert for label/annotation. In the following,

we described our approach for leveraging unlabeled data through a

proximity graph model and selecting informative data instances in

preparation to query the expert.

3.1 Proximity-Based Modeling

Inspired by graph-based semi-supervised learning research, we pro-

pose to construct a proximity-based model to quantify similarity

among data instances. The intuition behind a proximity-based mod-

eling and label inference is smoothness assumption. The smoothness
assumption suggests that the instances that are close in the feature

space should have similar labels [12]. The process of constructing

a proximity-based model includes two phases. The first phase aims

to build a proximity graph using both labeled and unlabeled data.

Leveraging unlabeled data could potentially improve the model. As

suggested by prior research [12], in the absence of sufficient labeled

data, using both labeled and unlabeled data can lead to a more ac-

curate decision boundary for the learned model. The second phase

is label inference, which focuses on generating labels for unlabeled

instances through an iterative label propagation method.

Definition 2 (Proximity Graph). A proximity graph 𝐺 (𝑉 , 𝐸)
is a weighted graph where each node in 𝑉 represents an instance in
𝑋 = 𝑙 ∪𝑈 . Each node in the graph maintains a vector of its feature
values and the probability distribution of its labels. An edge 𝑒𝑖 𝑗 ∈ 𝐸
represents the amount of similarity between instances xi and xj.

We denote the similarity between xi and xj by [ (xi, xj) and
compute its value by their Euclidean distance:

[ (𝑖, 𝑗) = ∥xi − xj ∥ (11)

To avoid the confusion of far away instances, we build similar-

ity graph using 𝑘-NN schema which is one of the most popular

approaches in similarity graph construction [8]. Therefore, we mea-

sure edge weights in the similarity graph using the following equa-

tion:

𝑒𝑖 𝑗 =

{
[ (𝑖, 𝑗) if 𝑖 ∈ ^ ( 𝑗) or 𝑗 ∈ ^ (𝑖)
0 otherwise

(12)

where ^ (𝑖) is the set of 𝑘-nearest-neighbors of instance xi based on
the defined similarity function.

In practice, we will show that using the 𝑘-NN schema improves

the performance of the trained model in detecting eating moments.

3.2 Instance Selector

To maximize the labeling accuracy while taking into account the

constraint in (3), we need an effective instance selector function to

select the most informative instances from X to add to the training

data used to learn a final model. To quantify the informativeness of

the instances, in this article, we use an entropy-basedmethod, which

generates a score for a given instance based on Information Gain

(𝐼𝐺) from that instance. Recall that entropy indicates the certainty

of the model in classifying an instance. An entropy of zero means

pure certainty with one of the classes receiving a probability of

one. Therefore, low values of entropy suggest that the model is

confident about how to classify the input instance. The instance

selector I sorts the instances by their information gain and selects

the instance with the highest information gain to add to the labeled

pool 𝑙 .

3.3 Off-line PALS

As described previously in Section 2, in the off-line version of PALS,

we assume that a pool of unlabeled sensor instances is available

to the oracle. The oracle is then able to label any of the instances

and to assign the correct activity label upon request. In this off-

line approach, we assume that the provided label is correct. This

assumption is based on the fact that either the oracle’s memory

is perfect that they can remember past events or there is a video

recording of the activities that the oracle can navigate to find the

correct label for a queried activity.

Figure 1: Overall architecture of PALS for off-line active

learning.

Fig 1 shows the overall architecture of our off-line proximity-

based active learning approach. Initially, among all of the recorded

activities, there is no or a small set of labeled instances 𝑙 along with

a large pool of unlabeled instances𝑈 . Our algorithm constructs a

proximity-based graph on the entire dataset using both 𝑙 and 𝑈 .

9



Toronto ’20, June 19–21, 2020, Toronto, Canada Nourollahi et al.

Following the graph construction phase, the model aims to infer

the actual label of the instances in 𝑈 in multiple iterations of the

label propagation procedure. In the next step, the instance selector

I searches through the unlabeled instances to find the most infor-

mative instance in 𝑈 , to date, to request for a label. The process

concludes by adding the labeled instance to the model.

Algorithm 1 Algorithm for Off-line PALS

Input: labeled data 𝑙 , unlabeled pool𝑈 , number of iterations 𝑘 , budget

Δ
Output: Proximity-based model 𝑓

Initialize: 𝛿 ← Δ
𝑘
, 𝑖𝑡𝑟 ← 𝑘

1: procedure Offline PALS

2: 𝑓 ← construct proximity-based model on 𝑙 ∪𝑈
3: while 𝑖𝑡𝑟 > 0 do

4: 𝐿𝑢 ← inferred labels on𝑈 using model 𝑓

5: 𝐼𝐺𝑠 ← 𝐼𝐺 (𝐿𝑢 )
6: 𝑋𝑠𝑒𝑙 ← 𝛿 instances with highest 𝐼𝐺𝑠

7: 𝑙𝑠𝑒𝑙 ← labels provided by oracle for 𝑋𝑠𝑒𝑙

8: 𝑙 ← 𝑙 ∪ (𝑋𝑠𝑒𝑙 , 𝑙𝑠𝑒𝑙 )
9: 𝑓 ← update model 𝑓 with new instances in 𝑙

10: 𝑖𝑡𝑟 ← 𝑖𝑡𝑟 − 1

As illustrated in Fig 1, the process continues iteratively by ob-

taining new labeled instances and adding them to the labeled set 𝑙 .

The model is then updated and the process of label inference and

instance selection is repeated. The algorithm finishes when all the

allowed queries are exhausted (i.e. |𝑙 | = Δ). Algorithm 1 shows the

off-line active learning approach in PALS.

3.4 Real-time PALS

To realize real-time active learning on streaming data, we develop

real-time PALS. Development of real-time PALS is motivated by

the fact that both non-stop video recording of user’s activities in

naturalistic settings and assuming perfect memory for the user to

accurately remember all activities performed in a given time-frame

in the past are unrealistic for activity recognition in free-living

situations. Therefore, to develop a personalized model in real-life

scenarios, we cannot solely rely on pool-based active learning. Yet,

we develop our real-time PALS algorithms based on the foundations

established in our off-line PALS.

The main challenge in real-time active learning is to decide

whether or not to query each sensor instance as it becomes avail-

able in real-time. In particular, because the model does not have

access to future instances, it needs to determine whether the cur-

rent instance is informative enough for which to request a label.

We define a threshold on the informativeness of a given instance

to make such determination in real-time. Such a threshold, if de-

fined appropriately, will allow us to make real-time active learning

decisions.

Definition 3 (Informativeness Threshold). Let X𝑠𝑜𝑟𝑡 be
the entire stream X sorted in informativeness score given by 𝐼𝐺 . An
informativeness threshold _ is a value such that 𝐼𝐺 (X𝑠𝑜𝑟𝑡𝑒𝑑Δ ) = _

where Δ is the query budget.

As shown in Fig 2, real-time PALS assumes that the user can

provide labels only for the current or very recent activities. In this

approach, each instance is evaluated only once. As a result of this

Figure 2: Overall architecture of PALS for real-time active

learning on streaming sensor data.

evaluation, the instance is either discarded from further analysis

or used to query the oracle. If the system receives a label from the

oracle, the next step is to update the model with the new instance to

obtain a more personalized model. This is accomplished by adding

the newly labeled instance to the labeled pool.

Algorithm 2 Algorithm for real-time PALS.

Input: current model 𝑓𝑐 , new instance 𝑥 , threshold _, budget Δ
Output: 𝑓

1: procedure Real-time PALS

2: 𝑝 ← make a prediction on 𝑥 using model 𝑓𝑐

3: 𝑒 ← calculate entropy of 𝑝

4: if 𝑒 ≥ _ and Δ > 0 then

5: Δ ← Δ − 1
6: 𝑦 ← query oracle to provide a true label for 𝑥

7: 𝑓 ← update model 𝑓𝑐 with (𝑥 , 𝑦)

We need an algorithm to adjust the value of the informativeness

threshold to balance labeling over the instance space. The algorithm

needs to avoid both high and low values of _. High values of _ will

translate into a highly conservative approach where a very small

number of questions are asked. Therefore, the algorithm can fail

in personalizing the model for the current user due to a lack of

sufficient input from the user. On the other hand, low values of _will

result in the algorithm exhausting the budget very quickly rather

than generating queries that are distributed in time. Therefore, we

need an adaptive algorithm to adjust _ to create a balance between

prompting time and query budget.

3.5 Adaptive Threshold Setting

An adaptive algorithm for adjusting _ needs to address concerns of

when and how to update _ to achieve effective performance. Our

strategy is to update _ after receiving a new instance to a value

that ensures a uniform distribution of queries over a given time

interval. Suppose 𝑁 denotes the number of instances over a given

time interval. Also, assume that we have seen 𝑘 instances so far.

To uniformly distribute queries over the time interval, we need

to adjust _ taking into account the fact that
𝑘
𝑁

percentage of the

budget has been already exhausted. Here we describe how _ can

be adjusted for a stream of data to ensure a uniform distribution of

queries over a given time interval of 𝑇 .

10



Proximity-Based Active Learning for Eating Moment Recognition in Wearable Systems Toronto ’20, June 19–21, 2020, Toronto, Canada

Let 𝑇 denote a given expected execution time interval of the

active learning process. Also, let X𝑡 represent the data stream gen-

erated up to time 𝑡 and X𝑠𝑜𝑟𝑡𝑡 be X𝑡 sorted in non-decreasing or-

der by informativeness score given by 𝐼𝐺 . Furthermore, let Δ𝑡 be
(𝑡/𝑇 ) × Δ. An informativeness threshold at time 𝑡 is denoted by _𝑡

is a value such that 𝐼𝐺 ((X𝑡 )𝑠𝑜𝑟𝑡𝑒𝑑Δ𝑡
) = _𝑡 . The threshold value _𝑡

ensures a uniform distribution of queries over the time interval 𝑇 .

This process for obtaining an adaptive _ is shown in Algorithm 3.

Algorithm 3 Algorithm for adaptive adjustment of informative-

ness threshold, _

Input: currentmodel𝑚, new instance𝑥 , time 𝑡 , time interval𝑇 , Entropy

of instances up to current time 𝐸, budget Δ
Output: _𝑡

1: procedure Adaptive_

2: 𝑝 ← use model𝑚 to make predictions about 𝑥

3: 𝑒 ← calculate the entropy of 𝑝

4: 𝐸 ← (𝐸 + 𝑒)𝑠𝑜𝑟𝑡𝑒𝑑
5: 𝑖𝑛𝑑𝑒𝑥 ← (𝑡/𝑇 ) × Δ
6: _𝑡 ← 𝐸𝑖𝑛𝑑𝑒𝑥

4 RESULTS

This section presents experimental results for PALS on two public

datasets SW6S and SW3S [11]. Both datasets contain 3D accelerom-

eter data collected from a wristband worn on the dominant hand

while doing eating-related activities. SW3S was collected in a semi-

lab setting from 20 participants performing different activities in-

cluding eating, watching a movie trailer, chatting, taking a walk,

placing a phone call, brushing teeth, and combing hair. The second

dataset was collected in free-living settings with seven participants.

The participants performed various daily activities such as tak-

ing, commuting, reading, walking, working with a computer, and

eating. We extract 15 features such as median and mean capture

intensity of the signal, variance and zero crossing intend to capture

morphology of the signal from signal segments for each axis of

sensor data. We use the 𝜒2 feature selection method to eliminate

irrelevant features. Since the majority of the samples in the datasets

are non-eating activities we use Synthetic Minority Over-sampling

Technique (SMOTE) [4] to up-sample the selected most informative

instances in each iteration of offline PALS. To avoid biased results

while testing the model on the unbalanced data, we report the f-
score value, which is a metric to measure the quality of the model

based on the balance between Precision and Recall.

4.1 Performance of Offline PALS

We compare our algorithm with two prior research in the area of

eating moment detection as well as state-of-the-art machine learn-

ing methods. (1) RFA, a Random Forest-based food intake gesture

recognition algorithm [11], and, (2) XGBoost, which is an optimized

and distributed implementation of Gradient Boosting. It provides a

parallel tree boosting method to effectively solve machine learning

problems in the industrial scale [5]. We assume that each algorithm

has access to 20% of in-lab data as its training set and we use the

remaining 80% of the data as a test set for validation. As shown in

Table 1, offline PALS outperforms other approaches; it achieves 41%

and 48% f-scores detecting eating moments for SW3S and SW6S

datasets, respectively, which is more improvement than XGBoost

and RFA. Also, low recall for eating class refers to the classifier

having a high bias in classifying all instances as not-eating. This

again emphasizes the importance of selecting appropriate metrics

while working with skewed datasets. As presented in Table 1, of-

fline PALS achieves a 62% and 64% recall when running on SW3S

and SW6S datasets, respectively, which demonstrates significant

improvements over RFA and XGBoost.

Table 1: Performance of offline PALS vs. other approaches.

Dataset Methods Recall F-score

Offline PALS 0.62 0.41

SW3S XGBOOST 0.25 0.35

RFA 0.22 0.34

Offline PALS 0.64 0.48

SW6S XGBOOST 0.32 0.40

RFA 0.10 0.18

4.2 Performance of Real-Time PALS

We conducted two experiments highlighting the effect of query

budget and decision threshold estimation on the performance of

the real-time PALS algorithm.

4.2.1 Query Budget. We assess the effect of query budget, Δ, on
the performance of real-time PALS approach in classifying eating

moments by examining twelve different values of query budget per

hour for different subjects in in-the-wild setting on SW3U dataset.

Fig 3 shows the f-score value averaged over all the subjects at

the end of training cycles. Limited query budget to query the user

in real-time, the model cannot adapt itself from the lab-setting to

real-world setting (less than 1% f-score for 5 queries per hour). First,

the distribution of eating vs. non-eating activities is very different

from a lab setting to a real-world setting. Second, in the real-world

setting, real-world settings and without people tend to perform

eating activities with higher variations than the lab setting. This

result again highlights the importance of designing adaptive models

for real-world settings. However, increasing the value of the budget

creates a more personalized classifier for each participant with a

higher performance measure. Increasing the query budget to 10

queries, the average f-score of detecting eating-moments increases

by around 23.1%, 29.8%, and 39% having the query budget of 10,

20, and 60, respectively. There is always a trade-off between the

query budget and user convenience. While by increasing the query

budget, we increase the performance of the model, we may also

increase user inconvenience.

4.2.2 Comparison of Thresholding Methods. To verify the effec-

tiveness of our approach in updating the decision threshold, _, we

designed two different methods. In the first method, the value of

the _ is learned from the in-lab training data which is derived based

on the ratio of budget to the size of the dataset. Since this value

extracted from the in-lab data and remains unchanged during the

real-time training, we refer to the decision threshold obtained in

this approach as static _. The second method uses the knowledge

of the best possible value for the threshold in a time interval to

select the most informative instances based on the entropy of the

classification decision. This experiment provides an experimental

11



Toronto ’20, June 19–21, 2020, Toronto, Canada Nourollahi et al.

Figure 3: Performance of the learned model in terms of f-

score as a function of query budget on SW3U dataset.

upper-bound for the adaptive lambda because it has unlimited ac-

cess to the future data and can extract the most accurate value of _

that the adaptive lambda algorithm attempts to estimate. We refer

to the decision threshold obtained by this approach as best _.
We compared the performance of the eating moment detection

models trained on real-time data of the SW3U dataset using best _,
adaptive _, and static _. The x-axis refers to different subjects and the
y-axis shows the binary f-score. The query budget is set to 60 queries

per hour. As Fig 4 shows, the adaptive lambda algorithm achieves

performance values close to best _ while using a static value for _

performs poorly across different subjects. Specifically, adaptive _ on
average achieves 7% less f-score compared to best _ and 12% better

f-score compared to static _. Also, to evaluate the extreme cases,

adaptive _ achieves to 13% less f-score compared to best _ for subject
number 5 while it works better for other subjects. Furthermore,

adaptive _ works, in worst case, slightly better than static _ with

1.6% better f-score for subject number 6 while it outperforms static
_ for other subjects specifically subject 7 with 28% higher f-score.

To summarize the results of this experiment, best _, adaptive _, and
static _ on average can provide 47%, 39%, and 28% average f-score

for all subjects of SW3U dataset.

Figure 4: Comparison of best _, adaptive _, and static _ for de-

cision threshold in terms of f-score on SW3U dataset.

5 CONCLUSIONS

Most approaches to detect eating moment require multiple on-body

sensors or specialized devices such as neck-collars for swallow

detection that are impractical for everyday usage. This research

developed a practical solution for eating moment detection using

wearable sensors. We designed a non-intrusive detection system

with machine learning algorithms personalized for the end-user.

Because people perform the same activity differently, relying on

a model trained based on in-lab data leads to a significant perfor-

mance drop for the new users.We proposed a novel proximity-based

model to recognize eating gestures. We showed that our approach

significantly decreases the need for labeled data with new users

leveraging active learning under a limited query budget. Our ex-

tensive analysis of data collected from real subjects showed that

PALS achieves up to 40% higher recall and 12% higher F-score in

detecting eating events. Furthermore, we showed the effectiveness

of our adaptive thresholding method and how the online PALS

algorithm could be adapted in real-world settings with a limited

query budget.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Founda-

tion, under grants CNS-1750679 and CNS-1932346. Any opinions,

findings, conclusions, or recommendations expressed in this mate-

rial are those of the authors and do not necessarily reflect the views

of the funding organizations.

REFERENCES

[1] Abdelkareem Bedri, Richard Li, Malcolm Haynes, Raj Prateek Kosaraju, Ishaan

Grover, Temiloluwa Prioleau, Min Yan Beh, Mayank Goel, Thad Starner, and

Gregory Abowd. 2017. EarBit: using wearable sensors to detect eating episodes

in unconstrained environments. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 1, 3 (2017), 37.

[2] Abdelkareem Bedri, Apoorva Verlekar, Edison Thomaz, Valerie Avva, and Thad

Starner. 2015. Detecting mastication: A wearable approach. In Proceedings of the
2015 ACM on International Conference on Multimodal Interaction. ACM, 247–250.

[3] Samir Chatterjee and Alan Price. 2009. Healthy living with persuasive tech-

nologies: framework, issues, and challenges. Journal of the American Medical
Informatics Association 16, 2 (2009), 171–178.

[4] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[5] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. ACM, 785–794.

[6] Katherine M Flegal, Margaret D Carroll, Cynthia L Ogden, and Clifford L Johnson.

2002. Prevalence and trends in obesity among US adults, 1999-2000. Jama 288,
14 (2002), 1723–1727.

[7] Abdelsalam Helal, Diane J Cook, and Mark Schmalz. 2009. Smart home-based

health platform for behavioral monitoring and alteration of diabetes patients.

Journal of diabetes science and technology 3, 1 (2009), 141–148.

[8] Markus Maier, Matthias Hein, and Ulrike Von Luxburg. 2007. Cluster identi-

fication in nearest-neighbor graphs. In Algorithmic Learning Theory. Springer,
196–210.

[9] Theresa A Nicklas, Tom Baranowski, KarenW Cullen, and Gerald Berenson. 2001.

Eating patterns, dietary quality and obesity. Journal of the American College of
Nutrition 20, 6 (2001), 599–608.

[10] Burr Settles. 2012. Active learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning 6, 1 (2012), 1–114.

[11] Edison Thomaz, Irfan Essa, and Gregory D Abowd. 2015. A practical approach

for recognizing eating moments with wrist-mounted inertial sensing. In Proceed-
ings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing. ACM, 1029–1040.

[12] Xiaojin Zhu. 2006. Semi-supervised learning literature survey. Computer Science,
University of Wisconsin-Madison 2, 3 (2006), 4.

[13] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised

learning using gaussian fields and harmonic functions. In Proceedings of the 20th
International conference on Machine learning (ICML-03). 912–919.

12


	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Limited Budget Training

	3 PALS Framework Design
	3.1 Proximity-Based Modeling
	3.2 Instance Selector
	3.3 Off-line PALS
	3.4 Real-time PALS
	3.5 Adaptive Threshold Setting

	4 Results
	4.1 Performance of Offline PALS
	4.2 Performance of Real-Time PALS

	5 Conclusions
	Acknowledgments
	References

