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Abstract—Wearable EEG (electroencephalogram) systems
have demonstrated potential in epilepsy monitoring, sleep assess-
ment, and determining cognitive workload to improve human
decision-making. However, analyzing EEG signals is challenging
due to their non-stationary nature and susceptibility to noise.
In particular, achieving high accuracy in machine learning tasks
requires large amounts of labeled data, which is difficult to obtain
due to the time-consuming and labor-intensive nature of data
labeling. To address these challenges, we propose a self-supervised
learning (SSL) approach for cognitive workload classification
using wavelet-based augmentations of EEG signals. First, two
augmentations per channel are generated, and their wavelets
are computed. The visual representations of these wavelets are
then fed to the SSL pretext phase as contrastive pairs to pre-
train the model. Finally, the pre-trained model is fine-tuned for
workload classification using small amounts of labeled EEG data.
Experimental results on the EEG During Mental Arithmetic
Tasks (EEGMAT) dataset show that our method outperforms the
state-of-the-art supervised models. Notably, our model achieves
an accuracy of 99.5% with only 50% of the labeled data,
demonstrating the effectiveness of our approach in scenarios
with limited labeled data availability. Furthermore, the proposed
approach achieves an accuracy of 98.6% in the leave-one-subject-
out analysis.

Index Terms—EEG classification, cognitive workload, self-
supervised learning, contrastive learning, wavelet transform

I. INTRODUCTION

Electroencephalography (EEG) is a non-invasive, affordable
method that measures the brain’s electrical activity using elec-
trodes on the scalp. EEGs are able to track in-home monitoring
of brain activity in real time. Non-invasive EEG systems
are used to study various brain functions, such as cognitive
workload classification [1]. Cognitive workload is defined as
the amount of mental resources needed by a person to perform
a cognitive task, which can determine the human workload
capacity. Overloading capacity workload can negatively impact
the performance and productivity of individuals [2].

Extracting robust and relevant features [3], particularly in
wearable computing where real-time monitoring is critical,
is challenging because the EEG signals are generally noisy
and non-stationary [4]. Machine learning methods have been
employed to identify discriminative features that represent
intrinsic data patterns [5], [6]. Prior research proposed a
method for cognitive performance detection using entropy-
based features extracted from EEG signals, employing Support
Vector Machine (SVM) and KNN classifiers [7]. Moreover,
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deep learning models such as convolutional neural networks
(CNN), recurrent neural networks (RNN), and deep belief
networks (DBN) have been proposed in EEG classification
tasks [8]. Additionally, a shared spatial map network (SSMN)
that abstracts EEG data representations from different individ-
uals and electrode layouts is proposed to extract features and
use deep learning techniques to classify mental workload [9].

Labeling EEG recordings is challenging due to the compli-
cated nature of brain processes, the need for human experts,
and the presence of noise, such as human movements and
eye blinks. Moreover, combining various datasets is infea-
sible because the experimental setups across various studies
are different [10]. To address these issues, a self-supervised
learning (SSL) method is proposed to learn representations of
the input data from unlabeled data in an unsupervised manner.
Unlike supervised learning, which depends on large volumes
of labeled data, and unsupervised learning, which identifies
patterns without labels, SSL creates artificial labels from the
data itself. Therefore, SSL could be a promising approach in
wearable systems where data labeling is costly [11].

The process of designing an SSL model contains two
phases, including a pretext task and a downstream task. In
the pretext task, a model is trained to extract meaningful
representations from unlabeled data. In the downstream task,
the pre-trained model is used to classify the dataset with
insufficient labeled data [10]. Contrastive learning is a well-
known method for designing self-supervised learning in which
augmented input data are fed into the model to identify the
differences between input pairs. Hence, it reveals general and
robust features across different tasks [12].

One of the prominent contrastive learning methods is
SimCLR (Simple Framework for Contrastive Learning of
Visual Representations) [13]. SimCLR, proposed specifically
for images, improves the learning process by maximizing
the similarity between different augmentations of the same
data sample using a contrastive loss. Mohsenvand et al. [11]
modified the SimCLR method to adapt to EEG signals. A
contrastive learning method was presented to train a channel-
wise feature extractor for learning representations from EEG
signals. Furthermore, the authors evaluated a set of augmen-
tation techniques specifically for EEG data and assessed their
effectiveness on a classification task.

In our proposed method, we first develop two augmen-
tation techniques for the EEG recordings of each channel,
followed by computing the scalograms of the augmented sig-
nals. Scalograms can be viewed as 2D image representations
of continuous wavelet transform (CWT). CWT is a critical



method that effectively extracts features from non-stationary
signals [14]. To the best of our knowledge, no prior work has
developed SSL for EEG wavelet-based classification. Our aim
in the pretext phase is to maximize the similarity between these
two wavelet images for each channel using contrastive loss to
extract robust features of the EEG data. We use the representa-
tions extracted from the pretext phase for specific classification
tasks in the downstream task. The main contributions of this
paper are as follows: (1)We propose a novel wavelet-based
augmentation for use in self-supervised learning for EEG
signal classification by creating two signal augmentations and
computing their scalograms; (2) We introduce a method to
learn feature representations from EEG scalograms in a self-
supervised way; (3) We use contrastive learning on scalograms
to enhance classification accuracy while minimizing the need
for large labeled datasets.

II. PROPOSED METHOD

The overview of our proposed method for classifying EEG
signals based on SSL is shown in Fig. 1. We applied our
proposed method on the public EEGMAT dataset [12], which
is described in the sections III-A. As shown in Fig. 1, our
proposed method consists of two steps, including a pretext
task and a downstream task. These steps are described in
Section II-A and Section II-B, respectively.
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Fig. 1: Proposed approach consisting of pretext and down-
stream tasks.

A. Pretext

During the pretext task step, a robust representation of the
EEG data is extracted for use in a downstream task. The
objective of this step is to maximize the similarity between two
augmentations of the same channel by utilizing a contrastive
loss [15]. Each step of the pretext task is illustrated in Fig. 1
and explained in more details below.

1) EEG Augmentation: Augmentation plays a crucial role
in contrastive learning as long as the meaningfulness of the
EEG records is preserved. While augmenting images is per-
ceivable to the human eye, the augmentation of EEG records
requires expert verification. Mohsenvand et al. [11] assess
several EEG record augmentation techniques within a specific
range recommended by neurologists to maintain the physiolog-
ical relevance of the records. Among all the techniques, zero-
masking and amplitude scaling perform significantly better in
extracting useful features for downstream tasks. Amplitude
scaling adjusts the overall amplitude of the EEG signal, with

recommended scaling between 0.5 to 2 times. Zero-masking
involves replacing a segment of the EEG signal with zeros,
recommended between 0 and 150 data points.

These two augmentation methods are employed in our study,
and an example of each on the EEG data is shown in Fig. 2.
During this step, each channel is analyzed individually, and
two augmentations are computed for each channel. These two
augmented data points are then considered positive pairs.
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Fig. 2: An example of two augmentation methods on EEG.

2) Computing scalogram using continuous wavelet trans-
form (CWT): A scalogram is a visual representation of the
continuous wavelet transform. The Morlet wavelet with a
scale of 129 is used in this study. After computing two
augmentations for each channel, the scalograms of both the
original and augmented data are computed as color images
with a size of 3× 224× 224.

3) Encoder: In this step, we employ a Convolutional Neural
Network (CNN) to extract representation vectors from the
scalogram images. The architecture of the designed CNN, as
shown in Figure 3, consists of three Conv-2D layers followed
by two dense layers. Consequently, by the end of this step, we
have extracted 128 salient features from the images.
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Fig. 3: The encoder Architecture. The kernel size for each
layer is shown inside the boxes in blue.

4) Projector: The salient features of the encoder are fed to
the projector to collapse them into 64 features. The projector
architecture is shown in Figure 4, which consists of two dense
layers with a ReLU activation function in between.
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Fig. 4: The projector Architecture
5) Contrastive Loss for Pretext stage: Our method uses the

NT-Xent (normalized temperature-scaled cross entropy) loss
function from Chen et al. [13]. For a set {xk} with a positive
pair xi and xj , the goal is to identify xj within {xk}k ̸=i for
a given xi. Let zi and zj be the projector outputs for xi and
xj . The NT-Xent loss for this pair is:



ℓi,j = − log

(
exp(sim(zi, zj)/τ)∑2N
k ̸=i exp(sim(zi, zk)/τ)

)
where sim(u, v) is the cosine similarity between u and v, and τ
is a temperature scaling parameter. The final loss is the average
ℓi,j over all positive pairs, considering (i, j) and (j, i).

B. Downstream

In the downstream task, we fine-tune the pre-trained model
specifically for EEG classification. The encoder’s weights,
learned during the pretext task, are used to initialize the
model in this phase. We replace the projector with a classifier,
adjusting the output size of the final layer to match the number
of classes; in this case, an output size of 2 for classifying EEG
data as low workload or high workload. Then the model is
fine-tuned to achieve high accuracy.

III. EXPERIMENTS AND RESULTS

We compared our proposed method with that of two state-
of-the-art classifier methods, [7] and [9], using the EEGMAT
dataset in order to highlight the significance of our proposed
method for providing better performance. In the following sec-
tions, we will describe the EEG dataset used, our experimental
setups, and the outcome results.

A. Dataset

The publicly available dataset [12] includes EEG recordings,
sampled at 500 Hz, from 36 participants before and during
intense cognitive activity, using 19 channels. Participants first
undertake a three-minute resting EEG with eyes closed, fol-
lowed by a four-minute mental serial subtraction task. The
dataset includes EEG records from the resting phase and the
initial minute of the task. Data were filtered with high-pass (0.5
Hz), low-pass (45 Hz), and power line notch (50 Hz) filters,
and artifacts were removed using Independent Component
Analysis (ICA).

For our analysis, we selected the first 60 seconds of data
from the unloaded trial to indicate a low mental work-
load(LMW) and the entire data from the task trial to indicate
a high mental workload(HMW).

B. Experimental setups

Because the dataset consists of recordings from 36 subjects
with 19 channels where each subject has two recordings
corresponding to the resting and task trials, the dataset has a
total of 1, 368 instances. The scalograms of the entire length of
each data instance with the duration of 60 sec. were computed.
These samples are split into 70%, 15%, and 15% of total
samples for train, validation, and test sets, respectively, to use
in our proposed SSL model. Augmentation is performed only
on the training samples to avoid data leakage. The number
of epochs is set to 50 for both the pretext and downstream
tasks. The batch size is set to 10 for training data. We used
the Adam optimizer with a learning rate of 3 × 10−4 for the
pretext section and SGD with a learning rate of 1× 10−3 and
momentum of 0.9 for the downstream task. The baseline model

is made up of the encoder and the classifier. The performance
metrics for evaluating the models’ results include Accuracy,
Precision, Recall, and F1 Score.

C. Results and Discussion

Table I presents the performance of state-of-the-art methods
and our proposed methods in terms of test accuracy and F1-
score. The best performances of the methods proposed by
Sharma et al. [7] and SSMN [9] on the EEGMAT dataset are
shown in this table. We implemented 10-fold cross-validation
for our baseline model, as it is used in other methods. The
results of our SSL model on the test dataset (15% of the
total data) are shown in table I. We can conclude that the
test accuracy of our baseline model outperforms the model
of Sharma et al. by about 5% and significantly surpasses the
SSMN method in both test accuracy and F1-score. Moreover,
our SSL method achieves more than 99% in test accuracy and
F1-score, highlighting its effectiveness in improving workload
classification based on EEG data.

TABLE I: Performance comparison of state-of-the-art works
classifiers with our proposed method

Reference Classifier Test accuracy F1-score
Sharma et al. [7] SVM 94.00% -

SSMN [9] CNN 74.6% 74.6%
Our Baseline CNN 98.98% 98.94%

Our SSL CNN 99.52% 99.54%

Besides improving accuracy, the self-supervised learning
method aims to offer better results even when there is a limited
amount of labeled data. To investigate the performance of
the proposed self-supervised learning method, we fine-tuned
the model by leveraging different percentages of labeled data,
assuming only this percentage of total data has been labeled.
The results of performance metrics on test data when the SSL
and baseline model are trained with different percentages of
labeled data are shown in Figure 5. By noting this figure,
we can conclude that the SSL model, compared with the
baseline model, offers better performance in all terms of test
accuracy, F1-Score, recall, and precision when the models are
trained on different percentages of labeled data. We can see in
Figure 5a that the SSL model achieves an accuracy of about
98% with only 20% of labeled data, while it reaches 99.52%
accuracy when fine-tuning with the entire dataset. Moreover,
the SSL model can achieve the same accuracy as the baseline
model with a significantly lower percentage of label data,
e.g., SSL achieves around 99% (see pointers 1 ) with only
30% of labeled data, whereas the baseline model reaches this
accuracy by entire labeled data (see pointer 2 ). Furthermore,
the accuracy of the baseline model dropped more quickly
when the percentages of labeled data were less than 50%
in comparison with the SSL model. These results highlight
the effectiveness of our proposed SSL method in improving
classification performance for EEG data, demonstrating its
potential for real-world applications where labeled data is
limited or hard to obtain.

Figure 6 shows the training and validation loss and accuracy
of the SSL and baseline model over 50 epochs. The SSL
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Fig. 5: Performance metrics for different percentages of la-
beled data: (a) Accuracy,(b) F1-score,(c) Recall,(d) Precision

model converged after around 18th epochs, with training and
validation accuracy approaching 100% and the losses converg-
ing, while the baseline model converged after 36th epochs.
This indicates that the SSL model learns more effectively and
generalizes better to unseen data. Faster learning in SSL is due
to its method of using unlabeled data to pre-train the model.
So, the pretext phase acts like weight initialization, giving the
model a better starting point and improving training accuracy.

We also evaluated the performance of our SSL-based tech-
nique for deployment in the real world to classify the mental
workload of each subject based on the total channel record-
ings. For this purpose, we performed a leave-one-subject-
out analysis, where data from each subject were iteratively
considered test data, and the remaining data were used for
training the model. Each subject has 19 channel recordings
for two workloads: LMW and HMW. The model predicted the
class for each channel as either LMW or HMW. A majority
voting was then used to classify the mental workload of the
subject. The overall accuracy was 98.6%.
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Fig. 6: Training and Validation Curves over epochs (a) and (c)
Accuracy. (b) and (d) Loss.

IV. CONCLUSIONS

This paper presents a novel wavelet-based self-supervised
learning technique for cognitive workload classification. Our
method utilizes wavelet transforms and contrastive learning to
enhance feature extraction. The proposed approach achieved
a test accuracy of 99.52% and an F1-score of 99.54% on the
EEGMAT dataset. This suggests that our method outperforms
the state-of-the-art models on similar machine learning tasks.

Moreover, the proposed SSL method achieves performance
metrics (i.e., test accuracy, F1-score, recall, and precision)
above 90% when the downstream model is trained using
a small portion of the available training data. Hence, the
performance of our model remains relatively high even with
small amounts of labeled data. This observation indicates the
potential of our approach for use in practical applications in
wearable health monitoring and real-time workload detection
systems where data collection and labeling are costly.
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