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Abstract— Stress monitoring is an important area
of research with significant implications for indi-
viduals’ physical and mental health. We present a
data-driven approach for stress detection based on
convolutional neural networks while addressing the
problems of the best sensor channel and the lack of
knowledge about stress episodes. Our work is the
first to present an analysis of stress-related sensor
data collected in real-world conditions from individu-
als diagnosed with Alcohol Use Disorder (AUD) and
undergoing treatment to abstain from alcohol. We
developed polynomial-time sensor channel selection
algorithms to determine the best sensor modality for
a machine learning task. We model the time variation
in stress labels expressed by the participants as the
subjective effects of stress. We addressed the sub-
jective nature of stress by determining the optimal
input length around stress events with an iterative
search algorithm. We found the skin conductance
modality to be most indicative of stress, and the
segment length of 60 seconds around user-reported
stress labels resulted in top stress detection perfor-
mance. We used both majority undersampling and
minority oversampling to balance our dataset. With
majority undersampling, the binary stress classifica-
tion model achieved an average accuracy of 99% and
an f1-score of 0.99 on the training and test sets after 5-
fold cross-validation. With minority oversampling, the
performance on the test set dropped to an average ac-
curacy of 76.25% and an f1-score of 0.68, highlighting
the challenges of working with real-world datasets.

Index Terms— stress detection, alcohol addiction,
wearables, machine learning
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Fig. 1. An mHealth system for automated health assessment
and intervention for sustained behavior changes.

STRESS and challenges associated with stress man-
agement are prevalent problems of modern life.

Many physical and mental health problems are driven by
or escalate with the degree of stress. Stress has especially
harmful effects on those who suffer from psychologi-
cal and physical health problems. One such population
group is individuals suffering from Alcohol Use Disorder
(AUD). Alcohol addiction has increasingly become a
serious public health concern, and recent epidemiological
data indicate increasing rates of alcohol use and alcohol-
related disorders among U.S. adults [1]. National data
also suggest that treatment admissions are highest for
patients suffering from alcohol use disorders relative to
other substances [2]. Due to the intense physiological
response induced in the human body because of stressful
events, physiological signals such as heart rate variability
(HRV), electrodermal activity (EDA), skin temperature,
electromyography (EMG), electrocardiography (ECG),
and respiration rate lend themselves as best bio-markers
for stress monitoring [3].

Stress detection and early intervention are considered
critical elements in a treatment strategy toward prevent-
ing individuals with alcohol dependence from relapsing.
As shown in Fig. 1, mobile health (mHealth) technolo-
gies in which patients receive personalized interventions
on mobile devices (e.g., through a smartphone app)
represent a potential strategy toward helping an individ-
ual remain abstinent from alcohol [4]. However, prior
research in wearable-based stress monitoring suffers
from several shortcomings. First, previous research on
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stress monitoring focuses on in-lab experiments where
participants take stress tests such as counting backward
and preparing for a speech to induce acute stress [5]–
[9]. These studies conducted in a controlled environment
lack important properties of daily living experiences and
fail to generalize in real-world settings [10]. Second, in-
lab studies are often conducted with healthy participants,
and there is a lack of research involving vulnerable pop-
ulations such as individuals suffering from AUD. Third,
another important characteristic of the state-of-the-art
research is the reliance on multiple sensor modalities for
stress classification [5], [11]–[13]. Reliance on multiple
sensor modalities makes the system design expensive
regarding computation and energy requirements. Finally,
because prior research focuses on inducing stress in a
controlled environment, it assumes that the duration of
the stress event is known in advance. However, stress
and the response to a stressor are subjective, and the
same stress stimuli can elicit different effects in different
individuals. The variation in stress response expressed
by individuals ultimately gets transformed into the time
variation in stress labels indicated by the participants.
The shortcomings mentioned above contribute to a lack
of knowledge on developing and using mobile health
sensor systems in an intervention mechanism in real-
world settings.

Previously, we showed that physiological signals cap-
tured using a wearable wristband, including heart rate
variability and electrodermal activity, are associated with
self-reported outcomes, including stress and alcohol
cravings in individuals undergoing therapy to remain
abstinent from alcohol in the real-world setting [14]. This
work aims to investigate the development of efficient
machine learning models for stress detection using the
same sensor data. We present a data-driven stress detec-
tion approach based on Convolutional Neural Networks
(CNN) while addressing important research questions.
The main contributions of our work can be summarized
as follows: (1) we develop a polynomial-time sensor
channel selection algorithm to determine the best sensor
channel for a machine learning task; (2) we address
the lack of knowledge about stress episodes inherent to
collecting data in real-world settings by determining the
optimal segment length for stress events; (3) we evaluate
our algorithms using data collected in a real-world user
study to examine the associations between stress and
alcohol-related outcomes. We use the collected sensor
data to evaluate the performance of our stress detection
model; (4) we make our analysis code and the dataset
public to encourage further research in this area.

II. RELATED WORK

Stress detection and classification is an important area
of research with significant implications on the physical
and mental health of an individual [15]–[17]. Many
research articles have reported the usage of multiple
modalities for stress detection and classification [5],
[11]–[13]. In [5], multiple sensor data collected in lab
settings for three affective states - baseline, stress, and
amusement were used to train machine learning models
to achieve classification accuracies up to 80%. Authors
in [6] used heart rate variability data with a super short
time window for stress detection. Data collected from
20 participants in a lab setting was used to train a
CNN model to detect acute cognitive stress. In [18], the
Empatica E4 was used to collect physiological data from
participants diagnosed with substance use disorder. The
data were collected across four days, and a total of 104
stress events were reported. Machine learning models
trained on multiple modalities data for the binary task
of stress classification achieved maximum accuracy of
76.8%. In [7], EDA data obtained from 65 volunteers in
controlled conditions was used for stress classification
with top accuracy of 94.62%. Authors in [8] used blood
oxygen saturation to classify human stress with a classifi-
cation rate up to 95.56%. Facial blood oxygen saturation
data collected from 42 participants subjected to two
stress conditions was used to train machine learning
algorithms.

Stress and the response to stressors have shown to
have both objective and subjective dimensions [19]–
[21]. The stressor effects are assumed to occur only
when both (a) the situation is appraised as threatening
or demanding and (b) insufficient resources are available
to cope with the situation [19]. Hence, stressors are only
stressors in so far as the individual perceives or appraises
them to be so. The cause-and-effect relationship between
objective stress events and subjective responses is depen-
dent upon the subjectivity of the individual experiencing
the stressor. These subjective variations play out in the
biological, physiological, and psychological axes and
are encoded in the output of sensors quantifying the
effects of stress on an individual. Consequently, mobile
health systems designed to detect stress using sensors
must consider the subjective response to stress events.
Capturing these subjective relationships between stress
and stress responses becomes especially challenging in
real-world conditions.

III. SYSTEM OVERVIEW

Our stress detection approach relies on supervised
machine learning. To train a machine learning model f
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Fig. 2. Proposed system for stress detection. Among many sensor channels available from the sensing device, first the best
channel is selected based on the optimal sensor channel selection analysis results. Next, channel specific preprocessing is done
and then processed sensor data is divided into segments of length determined with the optimal stress segment length analysis.
Segmented raw sensor data from the best sensor modality with optimal stress segment length is used to train convolutional neural
networks for stress detection.

for a task T in a supervised manner, we need inputs X
and outputs Y to learn the mapping f : X → Y using
the dataset D(X,Y ). Therefore the main component
of the machine learning model training pipeline is to
create the dataset D, which represents the problem
space. To develop stress detection algorithms for real-life
settings, we use the sensor data collected in our ADARP
study [22]. As shown in Fig. 2, we use a convolutional
neural network architecture for machine learning in our
system design. A CNN architecture typically has a fea-
ture extraction block followed by a classification block.
The feature extraction block generates representations
(features) of the input sensor data to be used in the
classification block. The classification block learns the
mapping between the input representations and output
classes, achieving the machine learning goal. Further-
more, a CNN architecture lets us bypass the cumbersome
and expensive feature computation and selection process,
requiring domain expertise [6], [23].

Designing and training a generalizable stress detection
system that is accurate, fast, reliable, and optimized for
computational cost and power requirements is challeng-
ing. In particular, the transient characteristics of daily life
make training machine learning models challenging on
real-world data. First, although a wearable device may
provide multiple sensor modalities for model training,
continuous stress detection in the real-world warrants a
system that is efficient in resource consumption and does
not require unnecessary and redundant sensor modalities.
Therefore, the first question we address deals with the
problem of finding sensor channel(s) that result in the
highest performance for a machine learning task. Given
n number of sensor channels, we want to determine the

combination of sensor channels that leads to the best-
performing model (Section IV).

Second, in our dataset stress ground truth is obtained
through Ecological Momentary Assessment (EMA) and
by pressing the event marker button of the Empatica E4
wristband. Since our dataset was collected in real-life
settings, the time duration of the stress events is not
known a priori. Therefore, the second question that we
address (Section V) is the problem of optimal segment
length identification for stress events. Stress and response
to stress stimuli are subjective, and the occurrence and
duration of acute stress events vary from person to
person. The subjective nature of stress is reflected in the
sensor data through changes in the data and also through
the time variation in the instant of acute stress expressed
by the participants. Individuals might report the instant
of heightened stress with some delay with respect to
the actual peak in the sensor data as shown in Fig. 4.
Therefore before training a machine learning model, we
need to determine the optimal length for all stress events
reported by the participants. Furthermore, we also need
to ensure that the extracted sensor segment for the stress
class adequately accommodates all stress events present
in the dataset. The length of stress segments needs to be
large enough to capture stress events and, at the same
time, should not facilitate the inclusion of sensor data
from the baseline or not-stress class.

IV. OPTIMAL SENSOR CHANNEL SELECTION

Machine learning models trained on data from multi-
ple modalities often outperform models trained on single
sensor data [5], [11]. However, the better performance
of multi-modal systems comes at the cost of complex
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and expensive system design and higher computational
requirements. Integrating multiple sensors requires more
power during operation and complex processing routines
resulting in poor battery life. Using an arbitrarily large
number of sensors also increases the system’s cost, ulti-
mately discouraging the general population’s adoption
of the technology. Therefore, one design objective is
to optimize the processing pipeline to have a small set
of sensors while adhering to application requirements
in terms of feasibility (e.g., the number of sensors
to include in the final design) and performance (e.g.,
achieving a minimum accuracy for stress classification).
Optimizing the processing pipeline is particularly im-
portant in wearable sensor systems where computation
requirements are strict and battery life is at a premium.

A. Problem Definition
Given n sensor channels Cn = {c1, c2, c3, . . . cn},

the task of selecting a subset of the channels can
take two different forms. In the first case, the aim is
to find top-k channels without any constraint on the
model performance. We refer to this problem as top-
k channel selection (KCS). KCS concerns with finding
a combination of k channels Ck where k < n, such
that a machine learning algorithm f trained for task T
on input Ik with dimension k achieves the maximum
performance. Therefore, the k-channel selection problem
can be formulated as follows.

C∗
k = argmax

Ck∈Cn

P(Ck) (1)

where C∗
k denotes the optimal solution and P repre-

sents the performance of algorithm f with respect to the
learning task T .
In the second case, the goal is to find the subset of
channels that guarantee a given performance level P .
We call this performance-guaranteed channel selection
(PCS). In PCS, we find a combination of channels Cp ⊆
Cn, such that the performance of the machine learning
model f with the selected combination input Ip is greater
than or equal to P on task T .

minimize |Cp| (2)

Subject to:

P(f(Ip)) ≥ P (3)

Here, the learning task T is either a classification prob-
lem or a regression problem. The model’s (f) actual
performance is measured using metrics such as accu-
racy, f1-score, or mean absolute error, depending on the
objective of the learning process.

B. Problem Solution

Selecting a subset of n channels is a combinatorial
search problem with exponential time complexity. Com-
binatorial search is an NP-hard problem because of the
explosion of the possible states of the solution space.
However, most combinatorial search problems can be
solved by efficiently exploring the large solution space
of the possible combinations. We present a polynomial-
time algorithm based on the decision tree heuristic and
greedy approach for our channel selection problems.
Greedy algorithms work by selecting a locally optimal
choice in each iteration stage until the desired property
is satisfied. Our algorithm successively builds the best
channel combination in a decision tree fashion and
selects a new channel for addition to the current selection
using the greedy method.

Before we present our algorithms, let us understand
them with an example of KCS problem. Let the total
number of channels be n = 4, and we want to select
the best k = 3 channels. Let Ck be the combination
with top-3 channels that we want to find. Our algorithm
finds the channels in a decision tree fashion. In the tree’s
first level, there are 4 channels to choose from, and let
us say channel 2 is the best one, denoted by ∗ in the
figure. We add channel 2 to the current selection such
that Ck = {2}. Following this step, we have 3 channels
to choose from in the second level, and in the third
or final level, we have 2 channels for selection. Here,
at each level of the tree, we choose one channel that
maximizes the performance of the model f on task T
upon addition to the current subset of selected channels
Ck. For the considered example, when the algorithm
stops, the selected channels will be Ck = {2, 1, 3}.

Algorithm 1 is for the KCS problem and selects k
channels out of n channels without any constraint on
the final performance. Algorithm 2 describes the PCS
problem, which selects a combination of channels that
can achieve the performance threshold of at least P . In
both cases, a learning algorithm (f) is given and at the
start, the selected channel set is empty i.e., Ck = {}
and Cp = {}. Algorithm 1 is also given the number of
channels (k) to select and if the value of k equals the
size of the total channel set Cn, the algorithm returns
Cn and stops. Otherwise, in each run of the while loop,
the algorithm creates combinations of channels in sets
Ck and Cn. Next, we train machine learning models for
each created channel combination and select the channel
combination with the best score on the task T . Each
channel in the selected combination is removed from the
total channel set Cn and added to the selected channel
set, Cs, if not already in the set. If the size of Ck == k,
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then the algorithm stops and returns Ck. Otherwise, the
process is repeated until the size of Ck becomes equal
to k.

Algorithm 1: k-Channel Selection (KCS) Algo-
rithm

Data: Cn, k > 0, f
Result: k channels
Ck ← {};
if k = |Cn| then

return Cn

else
while |Ck| ≠ k do

Create combination of channels in Cn and
Ck, say Cs;

Train model fi for each channel combination
in Cs;

Select best combination Cb ∈ Cs;
for Each channel ci in Cb do

if ci /∈ Ck then
Ck ← ci

end
Cn ← Cn − ci

end
end
return Ck;

end

Algorithm 2 takes as input the performance threshold
value P and a small threshold metric ϵ used to determine
the improvement in the model’s performance upon the
addition of a new channel in the selected set Cp. Upon
selecting the best channel at the intermediate stage
using the greedy method, we check whether the current
performance Pb has reached the threshold performance
P or the performance improvement compared to the
previous stage is less than ϵ or not. If either of these
conditions is true, the algorithm stops and returns the
selected channels set Cp.

Both algorithms are required to create combinations
of channels from two sets. During execution, the set Ck

or Cp contains a combination of selected channels, and
the set Cn holds all channels that are not yet evaluated.
Combinations of channels are created by combining the
channel combination in Ck or Cp with each channel in
Cn as shown in algorithm 3. For example, if Ck =
{c1c2} and Cn = {c3, c4} then the combinations will
be {c1c2c3, c1c2c4}.

C. Complexity Analysis of Channel Selection

For the KCS algorithm, a brute force search algorithm
must review all possible combinations of k channels
out of n channels. Due to the greedy selection of
channels at the intermediate stage, the channel’s position

Algorithm 2: Performance-guaranteed Channel
Selection Algorithm (PCS)

Data: Cn, P , f , ϵ
Result: k channels
Cp ← {}, q ← 0, Cq ← {};
while true do

Create combination of channels in Cn and Cp,
say Cs;

Train model fi for each channel combination in
Cs;

Select best combination Cb ∈ Cs with
performance Pb;

for Each channel ci in Cb do
if ci /∈ Cp then

Cp ← ci;
end
Cn ← Cn − ci;

end
if (Pb > P ) ∨ (|q − Pb| < ϵ) then

return Cp;
end
q ← Pb;

end
return Cp;

Algorithm 3: Channel Combinations Algorithm
Data: Cn, Cs

Result: Channel Combinations
C ← {};
for Each channel ci in Cn do

C ← Ci + Cs;
end
return C;

in the selection process matters; consequently, we have
a permutation search space instead of a combinatorial
search space. Our algorithm selects the best local channel
and significantly decreases the solution space. For n-total
channels, we have n channel choices, and accordingly,
n different machine learning models are trained in the
first iteration of the algorithm. After selecting the first
best channel, n− 1 machine learning models are trained
in the second iteration. This continues, and for choosing
k channels out of n channels at the end, n − (k − 1)
models are trained. If the number of models that need
to be trained to select k channels is be Mk.

Mk =

k∑
j=1

(n− j + 1) (4)

Mk = n+ (n− 1) + (n− 2) + · · ·+ (n− k + 1) (5)

Also, for the worst case of selecting k = n − 1
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channels, the total choices of channel combinations will
be

= n+ (n− 1) + (n− 2) + (n− 3) + · · ·+ 2 (6)

= (n ∗ n− 1

2
)− 1 (7)

=
n2

2
− n

2
− 1 (8)

Therefore, we will have a polynomial time complexity
of O(n2) for the KCS algorithm. For the PCS algorithm,
the naive approach will give us an exponential runtime
since for n-channels, there are 2n possible choices.
Our greedy approach selects the best channel/channel
combination at each stage and consequently runs in
O(n2). This again follows from the fact that at each
stage, the number of choices keeps decreasing, and the
total number of options will be that shown in equation
(6).

D. Time Complexity of Model Training

Fig. 3. Modular design of the convolutional neural network used
in the KCS and PCS algorithms. We have a feature extraction
block for each channel, and outputs from all feature extractors
are fed to the classification block.

For the KCS and PCS channel selection algorithms, we
also need to consider the time complexity of training
machine learning models. During the successive iteration
of our channel selection algorithms, the number of input
channels to the machine learning model grows linearly.
Consequently, the model architecture is modified to
account for this change. We achieve this by having
separate feature extractors and classification blocks in the
model architecture as shown in Fig 3. The classification
block remains fixed, and the number of feature extractor
blocks equals the number of input channels. Since the
size or number of parameters of the feature extractor
block is fixed, increasing the number of input channels
will linearly increase the number of trainable parameters
of the complete model. Furthermore, the training com-
plexity of a machine learning model depends linearly
on the number of parameters of the model or has a

polynomial relationship with the size of the dataset
[24]–[26]. Therefore, the overall time complexity of our
channel selection algorithms will still be polynomial-
time O(n2).

V. OPTIMAL STRESS SEGMENT LENGTH

Sensor systems continuously sense some physical
phenomena and generate data spread in time. These
are time-series data used for training and evaluating
machine learning algorithms. The training data needs
to capture the properties of the task so that the trained
model learns to differentiate between the classes in a
generalized way. In our study, participants were asked to
mark stress events in time by pressing the push button on
E4 when they felt stressed. However, the event markers
may not necessarily be at the moment of heightened
stress. The event marker could be before, after, or during
the stress episodes, as shown in Fig. 4. These variations
stem from the subjective nature of stress such that the
same external stimuli could have different effects on
different individuals. Therefore, the sensor segment ex-
tracted around event markers needs to have a length that
accommodates the subjective nature of stress expressed
through temporal variations in the event markers. Earlier
works have used a 40 minute segment length around
stress events, i.e., 20 minutes before and 20 minutes after
the event marker [18], but fail to provide any reason
for their choice. In our understanding, extracting a 40
minutes segment for the stress class around each event
marker covers the varying effects of stress on different
individuals. However, the question of optimal segment
length remains unanswered. In our context, optimality
means the sensor segment length around event markers
that yields the best discriminative data between the stress
and not-stress class and facilitates a model with the
highest performance or lowest generalization error on
stress detection.

Fig. 4. Variation of the event marker and the actual stress event
peak in the sensor data. The event marker can be before, during,
and after the signal peak associated with the stress event. An
stress event starts with the rise and terminate during the decline
of the signal from its peak.

Let l be the length of the input time-series segment
x. One way to ensure that the input data contain the
maximum amount of information - consider all variations
in the participant’s stress response - is to use an infinitely
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long input segment, i.e., l =∞. However, this makes the
system unusable in daily life for activities such as stress
detection, where the system needs to be fast enough to
respond to events and changes happening in real-time.
Therefore, we need a segment length l = L that is
sufficiently small and captures the information about the
classes so that the machine learning model trained on the
dataset created for the input length of L has the lowest
generalization error. This is an optimization problem
where we find the length of the sensor segment used
for training the machine learning model f such that the
generalization error ϵg(f) is the lowest or below some
threshold δ.

|x| = L (9)

s.t. ϵg(f(x)) ≤ δ (10)

We determine the optimal segment length around
stress events by training machine learning models for
stress detection at different values of segment length.
Consequently, the best-performing model will be the
result of optimal segment length. For segment lengths
L = {l1, l2, . . . , ln} around event markers, we train
machine learning models F = {f1, f2, . . . , fn} on the
respective datasets D = {d1, d2, . . . , dn}. The model
with the best performance fo = max{F} will give us the
optimal segment length lo. In our analysis, the segment
length for stress events is varied from 60 seconds to 3600
seconds with an increment of 60 seconds. The sensor
segments for the not-stress class have a start and end
point of 60 minutes before, and after the event markers,
and for all values of stress segment lengths, there is no
data overlap between the stress and not-stress classes as
shown in Fig. 6.

VI. EVALUATION APPROACH

A. User Study and Dataset

We conducted a user study to collect sensor and survey
data for use in this project. After approval from the In-
stitutional Review Board at Washington State University
(IRB #17018), we recruited 11 participants receiving
treatment for mental health and alcohol use disorder at
a treatment agency in the state of Washington. Each
participant was asked to wear an Empatica E4 (shown
in Fig 5) wristband to capture in real-time continuous
physiological markers of stress, press the event marker
button on E4 whenever they felt stressed, and complete
the surveys sent to their phone 4 times daily for 14
days. Prior research studies have studied the sensor data
obtained from E4 and have found a good correlation
with standard clinical ground truth [27], [28]. Empatica

E4 measures skin conductance or electrodermal activity
(EDA), skin temperature (TEMP), 3-axial body accel-
eration (ACC-X, ACC-Y, ACC-Z), blood volume pulse
(BVP), and heart rate (HR). A total of 1698 hours of
physiological data were collected and 409 moments of
stress were identified using the button available on the
E4. For more information about the study and dataset
please see our paper [22].

Fig. 5. Empatica E4 wristband with embedded sensors.

B. Filtering and Noise Removal
For EDA signals, a low-pass filter is suitable for re-

moving high-frequency noise. In our analysis before the
normalization and segmentation stages, we use a second-
order low-pass Butterworth filter with a cutoff frequency
of 1.25 Hz to filter out high-frequency noise from EDA
signals [29], [30]. In our earlier work [14], we estimated
the quality of EDA data collected in our study across two
dimensions using standard tools like EDA Explorer and
LedaLab. We estimated the proportion of clean signals
after noise and artifact removal and the distribution of
skin conductance response (SCR) using Trough-to-Peak
analyis (TTP) and Continuous Decomposition Analysis
(CDA). We found 87.86% of the EDA signals to be
clean and hence we have not used any other processing
routines except the low-pass filter to process the EDA
signals.

C. Dataset Construction
Collected sensor data is partitioned into the stress and

not-stress class based on an event marker (stress ground
truth) as shown in Fig. 6. Around each event marker,
we have a buffer zone and the data for the stress class
lies within the buffer region. All the data outside the
buffer zone is considered for the not-stress class. We ac-
knowledge that collecting data in free-living environment
impedes a through verification of stress event reported by
the participants. One way to verify stress events reported
using the E4 in our study was to find report of subjective
stress/not-stress in Ecological Momentary Assessment
(EMA) surveys completed by the participants after the
event timestamp for that particular day. We designed our
study to be able to verify labels using cross checking
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between stress events reported by the participants using
the sensor device E4 and EMA surveys. However, only
26% of E4 stress events could be corroborated using
survey responses. Since the adherence of stress events
was low in EMA surveys, we decided to use only stress
labels obtained from E4 in our analysis. However, we do
note that subjects may not always realize that they have
a stressful situation in a free-living environment or forget
to push the button on E4. Verification of labels is one
of the limitations of real-life studies, and the standard
approach is to validate labels using EMA surveys which
was also the aim of our study. Moreover we also believe
event markers generated using the push button on E4 are
more likely to correspond to the actual event of stress
than events reported in surveys later due to forgetting.

Fig. 6. Partition of the sensor data into stress and not-stress
class. Shown is a EDA signal segment with event marker or
stress ground truth represented by the red line. Data for stress
class is extracted around the event marker and other parts of
the segment is considered into not-stress class.

D. Class Imbalance

Due to the low number of stress ground truth, we
observe a large class imbalance between stress and not-
stress classes in the dataset. The number of samples for
the stress class depend on the length of sensor segment
extracted around each event marker. Smaller values of
sensor segment length around event markers result in
a lower number of samples for the stress class and a
higher degree of class imbalance between the stress and
not-stress classes.

We posit the class imbalance to be one of the con-
sequences of collecting data in real-world settings. Our
analysis uses minority class oversampling and majority
class undersampling to balance the classes before train-
ing machine learning algorithms. Artificial training data
is generated using the Sythetic Minority Over-Sampling
(SMOTE) [31] method in minority class oversampling
and training samples from the majority class is randomly
dropped in majority class undersampling. We believe ma-
jority undersampling will create a better dataset for stress
detection since both classes will be expressed equally
with preserved variance in the training and testing sets.
In contrast, minority oversampling will generate artificial
samples very similar to the original stress data. The
resulting dataset will have less variance in the stress

class. Consequently, the trained machine learning model
will overfit the noise in the data and will have poor
generalization performance [32].

E. Performance Metrics

We report precision, recall, f1-score, and accuracy on
the training and test sets. Accuracy measure how many
samples the model got right among all samples. Precision
measures the ability of the model to not make a mistake
on the negative class (not-stress class), and recall is the
ability of the model to find all positive samples (stress
class). Precision and recall are defined as

Precision =
TP

TP + FP

Recall =
TP

TP + FN

where TP is the true positive, FP is the false positive,
and FN is the false negative. F1-score is the weighted
average of precision and recall and gives the holistic
measure of performance.

F1-score = 2 ∗ Precision ∗Recall

Precision+Recall

F. Network Architecture and Hyperparameters

Fig. 7. Architecture of 1D Convolutional Neural Network (CNN)
model.

In our experiments, we have reused the CNN archi-
tecture we proposed in our earlier work [22] (shown
in Fig 7). The CNN model has two 1D convolutional
layers and three fully-connected layers. Before the first
fully connected layer, there is a global max-pooling layer
to aggregate embedding obtained from the convolutional
block and between the first and second fully connected
layers there is a drop-out layer. In the CNN architecture
convolutional layers belong to the feature extraction
block and fully connected layers constitutes the clas-
sification block. The learning rate was set to 0.001 in
all our experiments, and categorical cross-entropy loss
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with Adam [33] optimizer was used for training. The
values of all other hyperparameters were chosen after a
randomized search over a set of hyperparameter values.

VII. RESULTS AND DISCUSSION

We used one-dimensional CNNs in our analysis be-
cause CNN allows us to create the modular architecture
required in our channel selection algorithm. Also, 1D
CNNs have shown to have superior performance on
classification problems with time-series data in prior
research [6], [23], [34]. CNNs can directly learn features
and associations between the classes from the raw sensor
data during the training process.

A. Optimal Sensor Channel

The data collected in our study contains 7 sensor
channels with 3 channels for body acceleration (ACC-
X, ACC-Y, ACC-Z) and 1 channel each for electroder-
mal activity (EDA), blood volume pulse (BVP), skin
temperature (TEMP), and heart rate (HR). We include
both HR and BVP in our analysis because HR only
quantifies the heart rate whereas BVP also contains
information about Heart Rate Variability (HRV). To
determine the best sensor channel, we use the KCS
Algorithm defined in 1 with k = 1. The set Cn is the 7
channels of bio-markers, and the learning algorithm f is
the CNN with architecture and hyperparameters values
defined in section VI-F. We extract 40 minutes of sensor
segment around event markers for the stress class data,
and the remaining data belongs to the not-stress class.
We decided to use a 40 minutes length around event
markers because we think 40 minute is a big-enough
window to account for stress variation and its effect
on an individual. Our aim is to include all information
about stress response even if redundant information are
also included with a large stress event segment size.
Extracted segments for the stress and not-stress class is
further divided into windows of size 60 seconds with
50% overlap between consecutive windows. After data
preprocessing, the dataset is split into training and testing
sets with a 70 : 30 split. The models are trained for 100
epochs with a batch size of 100. Each model is trained 3
times with random initialization, and the average values
of loss, accuracy, and f1-score of the trained model on
the training and testing set are shown in Fig. 8.

The y−channel of the body acceleration achieved
the best performance on the training set. The EDA
channel has a similar performance on the training set
but performed much better on the testing set. Since
the generalizability of a machine learning model is
assessed by measuring the model performance on a

held-out test set, we conclude EDA sensor channel is
the best modality for stress classification. Also, ACC
signal in general has more noise than EDA making the
ACC model prone to overfitting and ACC signal is less
qualified to capture stress responses physiology. These
we believe to be the reasons for lower performance of
ACC model on the testing set. Next, we use the EDA
sensor channel to determine the optimal segment length
around stress events.

B. Optimal Stress Segment Length
To determine optimal stress segment length, we ex-

perimented with stress segment length from 60 seconds
to 3600 seconds with 60 seconds increment. Using the
EDA channel data, we trained individual stress detec-
tion model for each stress segment length. We first
extracted stress segments around the event markers for
each segment length as shown in Fig. 9. We then used
overlapping windowing to get the stress samples for
training machine learning algorithms. The same test set
was used to evaluate trained models at different values
of the stress segment length for a fair comparison. Stress
class samples for the segment length of 60 seconds
belong to stress samples for all other segment lengths;
since the segment length of 60 seconds is the lowest
value. Therefore, we extracted stress samples for the
segment length of 60 seconds, randomly selected 30%
of the samples (39 samples), and kept them as the
stress samples for the test set. The remaining 70% of
the 60 seconds stress data (89 samples) is used in the
training set and mixed with the stress samples obtained
for all other segment lengths greater than 60 seconds.
We also selected 39 samples from the not-stress data and
created the balanced test set to evaluate machine learning
models trained for different stress segment lengths. The
remaining not-stress data (163845 samples) are kept for
the training set.

Figure Fig. 10 shows the loss, accuracy, and f1-score
of machine learning models trained for different stress
segment lengths on the training and testing sets. The x-
axis shows the stress segment length with an increment
of 180 seconds. Before training, we balanced the training
set using the majority class undersampling. We found
the best stress classification performance for the segment
length of 60 seconds. The accuracy and f1-score on the
training and test set decreased with the increase in the
stress segment length.

C. Stress Classification
We determined EDA as the best sensor channel and

an optimal segment length of 60 seconds around stress
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Fig. 8. Training and test set loss, accuracy, and f1-score of models trained on different sensor channel data with random
undersampling to balance the classes. The EDA sensor channel has the best performance on both the training and testing set.

Fig. 9. Stress sensor segment extracted for different segment lengths. The not-stress class data starts before and after one hour
buffer around the event marker.
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Fig. 10. Loss, accuracy, and f1-score of the trained CNN model on the training and test sets at different values of stress segment
length. Models are trained on the EDA sensor channel data and the training set is balanced using random undersampling.

events from our analysis. Next, we trained a CNN model
for stress classification using the EDA sensor data with
a stress segment length of 60 seconds. After extracting
sensor data for the stress and not-stress class and over-
lapping segmentation, we get 203 samples in the training
set and 50 samples in the test set. We balance the training
set using the majority class undersampling method. Table
I shows the average values for loss, accuracy, precision,
recall, and f1-score for the training and testing set after
5-fold cross-validation. Our CNN model achieves an
average accuracy of 99% and an f1-score of 0.99 on
training and testing sets.

TABLE I
STRESS CLASSIFICATION WITH EDA STRESS SEGMENT LENGTH OF 60

SECONDS AND RANDOM UNDERSAMPLING TO BALANCE THE CLASSES.

Dataset Loss Accuracy
(%)

Precision Recall f1-
Score

Training 0.009 99.707 0.994 1.0 0.997
Testing 0.075 99.215 0.985 1.0 0.992

D. Results with Oversampling

In this section, we present the results of our anal-
ysis for the best sensor channel, optimal stress seg-
ment length, and stress classification using the minor-
ity oversampling method to balance the classes in the
training set. For minority class oversampling, we used
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the SMOTE method to generate synthetic samples for
the stress class. All other details of the analyses are
kept the same, and only the class balancing method is
changed. Due to the nature of SMOTE, after balancing
the classes, the training set contains a very high number
of similar samples for the stress class. The EDA sensor
channel again outperformed all other sensor channels
and achieved the highest accuracy and f1-score on the
test set. The results of the optimal stress segment length
analysis were mixed. In terms of accuracy, a segment
length of 180 seconds came on top, and for f1-score
segment length of 660 seconds achieved the highest
value.

TABLE II
STRESS CLASSIFICATION WITH EDA STRESS SEGMENT LENGTH OF

180 SECONDS AND SMOTE OVERSAMPLING TO BALANCE THE

CLASSES.

Dataset Loss Accuracy
(%)

Precision Recall f1-
Score

Training 0.018 99.33 0.992 0.994 0.993
Testing 3.974 76.25 0.99 0.529 0.689

For stress classification, the trained model achieved
an accuracy of 99% and an f1-score of 0.99 on the
training set as shown in table II. The model performance
decreased on the test set, with an accuracy of 76.25%
and an f1-score of 0.68. The recall value of 0.52 on
the test set indicates that the trained model misclassifies
not-stress samples as stress samples. We believe the
underwhelming performance in the case of minority
oversampling is due to the overfitting of the model on
the training data. Since the training data contains highly
similar stress class samples, the model learns specific
details or noise of the stress class during training and
consequently has higher generalization errors.

VIII. CONCLUSIONS

Stress and stress management is an integral part of our
daily lives. Early detection and classification of stress are
especially beneficial for developing intervention strate-
gies designed to improve the lives of individuals suffer-
ing from depression, anxiety, and addiction. Our analysis
and results show a viable method for stress detection
using sensor data collected in real-world conditions
from individuals diagnosed with alcohol use disorder
and undergoing treatment to abstain from alcohol. We
presented a data-driven approach for stress detection
based on convolutional neural networks while addressing
the problems of multi-modal wearable sensor systems
and the lack of knowledge about stress episodes in
real life. Our analysis of the best sensor channel and
optimal stress segment length answers two fundamental

questions about using sensor systems for stress detection
in daily life. We found the electrodermal activity (EDA)
or skin conductance to be most indicative of stress,
and the segment length of 60 seconds around stress
events gave the top stress detection performance. Using
majority undersampling to balance the classes, the stress
detection model trained on the EDA sensor data with a
stress segment length of 60 seconds achieved an average
accuracy of 99% and f1-score of 0.99 on training and test
sets after 5 fold cross-validation. The stress detection
performance dropped with minority oversampling with
an average accuracy of 76.25% and an f1-score of 0.68
on the test set. Our work has the following limitations:
(1) a more comprehensive analysis of the channel selec-
tion algorithms is needed to ascertain the importance of
presented algorithms properly, and (2) dataset collected
in our study and used in the analysis had a significant
class imbalance.

The analysis of optimal stress segment length is sub-
jective to our dataset and constraints of the study. The
result might be different for a dataset collected using
different sensor devices, different stressors or popula-
tion groups, and sensing modalities. Also, stress and
effects of stress have many facets including individual
characteristics and environmental factors. Hence, the
optimal stress segment length obtained from our analysis
may not be the same for stress events in general. For
example, stress caused by taking an exam vs. getting
involved in an accident would have different intensities
and duration. The size or type of the model should
have minimal influence on the results if the model is
not underfitting. In regard with channel selection, we
want to note that in cases when the sensor system has
multiple modalities such as the E4, the main utility of
channel selection is to manage the trade off between
complex algorithms and computational load and better
situation assessment. For example, by using other sensor
channels present in the E4, type and intensity of stress
can also be assessed. Furthermore, additional modalities
can provide contextual information that can be used to
remove confounding factors such as exercise and sleep
to better assess stress levels. In the future, we plan to
study our channel selection algorithms in detail and also
make the segment length determination dynamic.

The data1 and code2 used in our analysis are made
public to facilitate future research.
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