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Abstract
FuSE-MET addresses critical challenges in deploying hu-
man activity recognition (HAR) systems in uncontrolled en-
vironments by effectively managing noisy labels, sparse data,
and undefined activity vocabularies. By integrating BERT-
based word embeddings with domain-specific knowledge
(i.e., MET values), FuSE-MET optimizes label merging, re-
ducing label complexity and improving classification ac-
curacy. Our approach outperforms the state-of-the-art tech-
niques, including GPT-4, by balancing semantic meaning and
physical intensity.

1 Introduction
Inferring human activities using wearable sensor data has
garnered significant research attention, especially in the
realm of medical applications. However, existing activity
recognition systems are designed for controlled environ-
ments, often with healthy participants, leaving a gap in mod-
els that can operate effectively in free-living environments,
especially for individuals with chronic conditions (Ermes
et al. 2008; Fullerton, Heller, and Muñoz-Organero 2017).

Participants of user studies for activity recognition in
free-living environments perform their daily activities and
submit open-ended text labels. This brings challenges of
having noisy labels and different wordings for the same
or similar activities, which makes the activity recognition
problem more challenging. To overcome this, we intro-
duce FuSE-MET1 (Fusion of Semantic Embeddings and
MET Values), a novel framework that optimizes activity
recognition in uncontrolled environments. Unlike previous
approaches, FuSE-MET leverages domain-specific knowl-
edge, i.e., metabolic equivalent of task (MET), with seman-
tic meanings to reduce the label space for more efficient clas-
sification. By applying a lambda-weighted fusion of BERT-
based word embeddings (Devlin et al. 2019) and MET val-
ues, the framework effectively balances semantic meaning
and physical intensity (PI), addressing challenges such as
label disparity and sparsity. This method enables automatic
detection and merging of similar activities, resulting in re-
duced label space while maintaining high classification per-
formance and the integrity of the labels.
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1Soure code: https://github.com/shovito66/FUSE-MET
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Figure 1: Workflow of FuSE-MET
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Figure 2: Best models with FuSE-MET vs. the average of
models with baseline (no-fusion) for different clusters (K).

2 FuSE-MET Architecture
FuSE-MET restructures the label space generated from user-
annotated sensor data collected in free-living environments.
Unlike conventional methods that rely solely on semantic
similarities, FuSE-MET merges labels by incorporating both
semantic meaning and domain knowledge, particularly ac-
tivity intensity (MET) (Mirzadeh et al. 2019).

We define label merging as an optimization task where we
aim to transform noisy labels into meaningful clusters. Let
D = {(x1, y1), (x2, y2), . . . , (xm,ym)} represent the data,
where xi is the sensor data and yi denotes user-provided la-
bels from a set Luser = {a1, a2, ..., an} of n unique activ-
ities. Our goal is to create a reduced label space Lmerge =
{l1, l2, ..., lk} with k ≤ n, where each cluster Ci contains la-
bels that are both semantically and physically similar. Each
label ai is represented by a feature vector f(ai) = (1− λ) ·
w(ai)+λ ·m(ai), where w(ai) ∈ Rd is BERT-derived word
embedding and m(ai) is a d dimensional representation
of the MET value of the activity. Clustering is performed
by minimizing the total within-cluster sum of squared dis-
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Figure 3: Domain knowledge (λ) vs. F1 for different models.

Algorithm 1: FuSE-MET algorithm. wa ∈ Rd, ma ∈ Rd,
fa ∈ Rd. a′ is the closest label to a in the MET database.
Decoder : R+ → Rd creates vectors from met values.

1: Input: Noisy labels Luser, #clusters K, domain coeffi-
cient λ, BERT embedding model B, MET values M

2: Output: clustering labels for Lmerge

3: Begin
4: initialize F as an empty matrix of feature vectors.
5: for all label a in Luser do
6: wa = B(a), the word vector of a
7: a′ = argmina′′(cos dist(wa, B(a′′))) ∀ a′′ ∈ M
8: ma = Decoder(normalized MET value of a′)
9: fa = (1− λ)× wa +ma × λ

10: add fa to feature vectors F
11: end for
12: return Lmerge = K clusters by doing k-means on F
13: End

tances: C∗ = argmin
C

∑k
i=1

∑
aj∈Ci

∥f(aj) − µi∥2, where

µi is the centroid of Ci. This optimization ensures that ac-
tivities with similar semantic meaning and physical intensity
are grouped together, effectively reducing label complexity.

3 Experimental Setup and Analysis
We evaluated FuSE-MET using data from a clinical study in-
volving patients with cardiovascular disease. Accelerometer
and gyroscope data were collected from smartphones, and
user-provided activities were recorded using active learning.
The data were segmented into 5-second windows, with ex-
tracted features such as signal intensity, variance, etc. Dur-
ing data collection in uncontrolled environments, several
challenges arise, including: (i) Noisy Labels: BERT han-
dles multi-word, inconsistent labels, reducing noise in the
label space; (ii) Low Sampling Rate: Despite a sparse sam-
pling interval (5s of data, 5s of rest), FuSE-MET maintains
higher performance than GPT-4 by balancing semantic and
domain knowledge through MET integration (Table 1). De-
spite sparse sampling (5 seconds of data followed by 5 sec-
onds of rest), our method maintains high classification accu-
racy, proving effective even under low-resolution data con-

K Best λ Best Classifier ACC PRE REC F1

2 0.2 SVM 0.98 0.69 0.62 0.65
– ∗GPT4+CNN 0.62 0.61 0.6 0.59

3 0.4 XGB 0.68 0.77 0.76 0.77
– ∗GPT4+XGB 0.63 0.57 0.51 0.51

4 0.5 1NN 0.69 0.63 0.62 0.62
– ∗GPT4+XGB 0.55 0.33 0.32 0.3

5 0.5 DANets 0.58 0.49 0.65 0.48
– ∗GPT4+1NN 0.47 0.32 0.29 0.3

36 No-Fusion ∗1NN 0.27 0.18 0.19 0.18

Table 1: Best performances (on F1) of baselines and FuSE-
MET with the classifiers. ‘*’ indicates baseline.

ditions.
We trained multiple classifiers, including Random For-

est (RF), 1-Nearest Neighbor (1NN), SVM, Fully-connected
Neural Networks (NN), XGB, DANets, and CNN, using the
merged labels generated by FuSE-MET. FuSE-MET was
compared to two baselines: (i) GPT-4-based label fusion
without MET values and (ii) a nonfusion model with 36 dis-
tinct clustering. Fig. 2 shows that FuSE-MET consistently
outperforms the baselines by effectively merging labels us-
ing both semantic meaning and MET values. Optimal per-
formance is achieved with λ in the range of 0.2-0.5, balanc-
ing domain knowledge and semantics (Fig. 3). Lower k val-
ues usually provide higher accuracy but K=3 has a higher F1
(0.77) score than that of K=2 (0.65), which indicates K=3 is
a more accurate hyperparameter for label fusion than K=2.
(Table 1). Additionally, simpler models (i.e., 1NN, SVM)
perform better as FuSE-MET’s reduced label complexity al-
lows them to efficiently capture patterns without overfitting.

4 Conclusion
FuSE-MET shows superior performance in activity recogni-
tion by merging labels by leveraging semantic meaning and
MET values; Our approach reduces label complexity, en-
abling more accurate classification of sensor data. Classifiers
trained on the optimized labels generated by FuSE-MET
consistently outperform the baselines, including a ChatGPT-
4-based label fusion without domain knowledge and a no-
fusion model with distinct clustering. By balancing semantic
information and physical intensity, FuSE-MET proves to be
a robust and scalable solution for real-world activity recog-
nition tasks, especially in uncontrolled environments.
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