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Adversarial Transferability in Embedded Sensor Systems: An Activity
Recognition Perspective

RAMESH KUMAR SAH,Washington State University, United States

HASSAN GHASEMZADEH, Arizona State University, United States

Machine learning algorithms are increasingly used for inference and decision-making in embedded systems. Data from sensors are
used to train machine learning models for various smart functions of embedded and cyber-physical systems ranging from applications
in healthcare, autonomous vehicles, and national security. However, recent studies have shown that machine learning models can be
fooled by adding adversarial noise to their inputs. The perturbed inputs are called adversarial examples. Furthermore, adversarial
examples designed to fool one machine learning system are also often effective against another system. This property of adversarial
examples is called adversarial transferability and has not been explored in wearable systems to date. In this work, we take the first
stride in studying adversarial transferability in wearable sensor systems from four viewpoints: (1) transferability between machine
learning models; (2) transferability across users/subjects of the embedded system; (3) transferability across sensor body locations; and
(4) transferability across datasets used for model training. We present a set of carefully designed experiments to investigate these
transferability scenarios. We also propose a threat model describing the interactions of an adversary with the source and target sensor
systems in different transferability settings. In most cases, we found high untargeted transferability, whereas targeted transferability
success scores varied from 0% to 80%. The transferability of adversarial examples depends on many factors such as the inclusion of
data from all subjects, sensor body position, number of samples in the dataset, type of learning algorithm, and the distribution of
source and target system dataset. The transferability of adversarial examples decreased sharply when the data distribution of the
source and target system became more distinct. We also provide guidelines and suggestions for the community for designing robust
sensor systems. Code and dataset used in our analysis is publicly available here 1.

CCS Concepts: • Computer systems organization→ Embedded systems; • Computing methodologies→ Machine learning

algorithms; Neural networks.
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1 INTRODUCTION

Machine learning (ML) algorithms have increasingly became an integral part of embedded and cyber-physical systems.
In the context of embedded systems, ML models are used to drive the inference and smart decision making capabilities
of embedded and wearable sensor systems. For example, data from sensors such as accelerometer and gyroscope are
used for human activity recognition [34], images from camera are used to detect stop signs in self-driving cars [37],
and sound signals are used for person detection in smart home applications [20]. Advances in sensor and computation
1https://github.com/rameshKrSah/adversarial-transferability-sensor-systems
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2 Ramesh Kumar Sah and Hassan Ghasemzadeh

technologies now allows for real-time continuous use of ML algorithms for smart functionalities inherent in modern
embedded systems.

Fig. 1. 3-axial graphs for a benign sample take from the dataset, a targeted adversarial sample computed using the Basic Iterative
Method (BIM), and a benign sample for the target class.

However, recent studies have found that an adversary can easily fool machine learning models with the addition of
carefully computed perturbations to their inputs [7, 14, 33, 35]. These perturbed inputs are referred to as adversarial
examples. Even the addition of a small but carefully computed perturbation to benign inputs, as shown in Fig 1, can
degrade the performance of machine learning systems significantly [3, 21, 29, 33, 35]. What distinguishes adversarial
perturbations from random noise is that adversarial examples are misclassified far more often than samples that have
been perturbed by random noise, even if the magnitude of random noise is much larger compared to the adversarial
perturbation [35]. The problem is further exacerbated by the fact that adversarial examples are highly transferable and
adversarial examples computed to attack one ML system are often successful in fooling another ML system. The issue
of adversarial examples raise serious concern about the security and reliability of machine learning algorithms and
in-turn on embedded systems because of their reliance on ML algorithms for important functions. Studying adversarial
examples and their properties in the context of embedded system is an important topic to safeguard and invent measures
to make these systems secure and robust against adversarial attacks.

1.1 Motivation

First we establish the threat model used in this work and answer why the transferability of adversarial examples
is crucial to the discussion of robustness in machine learning powered embedded sensor systems. Assume Bob, an
adversary, has complete access to source system 𝑆1 with machine learning model𝑀1 trained using dataset 𝐷1. Alice is a
system administrator who wants to protect the target system 𝑆2 with machine learning model𝑀2 trained on dataset 𝐷2
as shown in Fig. 2. The dataset 𝐷1 available freely can be accessed by anyone and dataset 𝐷2 can be the same as 𝐷1 or
some private dataset only available to Alice. Also, models𝑀1 and𝑀2 can be of same or different types or architectures
and have same or different hyper-parameter values. Bob has access to Alice’s system via an oracle, and hence can
submit inputs and observe outputs. Bob being an adversary wants to attack Alice’s system, such that 𝑀2 is fooled
in classifying inputs into wrong classes. Bob can attack Alice’s system in one of two ways. Bob can either compute
adversarial examples using𝑀1 and 𝐷1 and transfer them to𝑀2 in the hope of fooling𝑀2 or train a substitute model
𝑀𝑆 on dataset 𝐷𝑆 generated using the oracle and then use the substitute model to compute adversarial examples to
fool𝑀2. In both cases, Bob tries to exploit the transferability property of adversarial examples to attack target system
𝑆2. In this work, we explore different types of adversarial transferability inherent to embedded sensor systems Bob
can exploit to attack Alice’s system. In the discussion, that follows we recognize Bob’s system as Source System and
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Alice’s system as Target System. For all four adversarial transferability modes we have discussed in this work, Bob has
complete access to source system 𝑆1, but can only query target system 𝑆2 on inputs and observe outputs.

Fig. 2. The operating scenario for transferability of adversarial examples. Bob is an adversary with complete access to source system
(𝑆1 ) and wants to attack Alice’s system (𝑆2 ) by computing adversarial examples using the source system and transferring them to
Alice’s system.

Adversarial transferability captures the ability of an adversarial attack against a machine learning system to be
effective against other independently trained systems [11]. The transferability of adversarial examples was first examined
in [35], in which the authors studied adversarial transferability 1) between different machine learning models trained
over the same dataset, and 2) between same or different machine learning models trained over disjoint subsets of
a dataset. Motivated by the results of [11], numerous studies have explored adversarial transferability for both test-
time evasion attacks and training-time poisoning attacks [11, 25, 29, 33]. Furthermore, prior research has shown that
adversarial examples can be generated in wearable sensor systems for human activity recognition [33]. However, the
transferability of adversarial examples that take into account characteristics of embedded systems has not been studied
yet, leaving a gap in the research, which we believe has significant and novel consequences. Because in addition to the
traditional notion of transferability - between different models trained on the same or disjoint subsets of a dataset - we
also need to consider new dimensions when exploring adversarial transferability in wearable sensor systems.

Embedded systems are dynamic in nature with properties impacting their operation. For an example, consider the
placement of a wearable device on the human body to detect human daily living activities. There are many devices
available in the market today that can be worn on the body in various ways. Some are worn as a watch, others can be
clipped on to clothes or shoes, strapped around the chest, and so forth. Furthermore, depending on the body location
of the device, the sensor readings are very different, and consequently, machine learning algorithms trained on these
sensor data learn unique mappings between inputs and outputs. Therefore an adversary who is planning to attack
these types of machine learning systems must also take into account the different properties associated with them.
These properties are well discussed in the literature [26, 41] for the case of building inference models. But to the best
of our knowledge, there has not been any work that had discussed these properties of embedded systems from an
adversarial point of view. All these lead to the fact that adversarial transferability in sensor systems is not simple and
straightforward and has many nuances. We believe an extensive study of the adversarial transferability will not only
show the strength of adversarial attacks but also mark its shortcomings and help us understand this unexplored problem
space.
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1.2 Contributions

In this paper, we present the first comprehensive evaluation of the transferability of adversarial examples in the context
of embedded sensor systems with wearable-based activity recognition as our pilot application. We not only consider
the traditional notion of transferability but extend that with novel transferability directions unique to sensor systems.
In particular, we discuss the transferability of adversarial examples from the following four perspectives:

• Adversarial transferability between machine learning models
• Adversarial transferability across users
• Adversarial transferability across sensor body locations
• Adversarial transferability between datasets.

To this end, we make the following contributions in this work. We for the first time introduce and define novel types
of adversarial transferability in the context of embedded sensor systems with a particular focus on wearable computing
systems. Second, we conduct an extensive set of experiments that highlight vulnerabilities and strengths of embedded
systems under different transferability cases for both targeted and untargeted evasion attacks. Third, we discuss and
validate our results with theoretical and graphical interpretations that take into account the properties of both models
and data distribution. Finally, we discuss open problems and possible research directions for adversarial transferability
in general for sensor systems.

2 BACKGROUND

2.1 Human Activity Recognition Pipeline

The problem of human activity recognition can be defined as: Given a set𝑊 = {𝑊0, ...,𝑊𝑚−1} of 𝑚 equally sized
temporal window of sensor readings, such that each window𝑊𝑖 contains a set of sensor reading 𝑆 = {𝑆𝑖,0, ..., 𝑆𝑖,𝑘−1},
and a set 𝐴 = {𝑎0, ...𝑎𝑛 − 1} of 𝑛 activity labels, the goal is to find a mapping function 𝑓 : 𝑆𝑖 → 𝐴 that can be evaluated
for all possible values of 𝑆𝑖 [22]. Raw data from sensors, such as accelerometer, gyroscope, and magnetometer, are
collected and passed into the processing stage for filtering and noise removal. The next stage is segmentation, where a
continuous stream of the sensor values is divided into temporal windows. After segmentation, statistical and structural
features are extracted from each window segment and are used to train machine learning algorithms for activity
classification. Another very successful approach to human activity classification uses Convolutional Neural Network
(CNN) with raw sensor segments as inputs. CNN model learns the features and the classifier simultaneously during the
training process from raw sensor data.

2.2 Adversarial Machine Learning

Given a machine learning classifier 𝑓𝜃 (𝑥) characterized by the parameters 𝜃 and trained on dataset 𝐷 = {(𝑥,𝑦)}, an
adversary tries to find inputs that are formed by applying small but intentional perturbations (𝛿) to the original samples
𝑥 such that the perturbed inputs 𝑥 = 𝑥 + 𝛿 are almost indistinguishable from the original samples and result in the
classifier predicting an incorrect label 𝑦 with high confidence. These perturbed input samples are called adversarial

examples. The objective of adversarial learning is to find perturbation 𝛿 which when added to the original inputs 𝑥
changes the output of the classifier 𝑓𝜃 (𝑥) ≠ 𝑦. In general, an adversary can attack a machine learning system in three
ways.
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(1) Poisoning Attacks: In poisoning attacks, an adversary attempts to degrade the performance of a machine learning
classifier by injecting adversarial examples during the training process to force the classifier to learn false
connections between input and outputs.

(2) Evasion Attacks: Evasion attack is the most common type of adversarial attack carried out during test time and
involves getting the target model to make mistakes on input samples. Evasion attack is sub-divided into two
types: 1) untargeted attack, and 2) targeted attack. In untargeted attack, an adversary intends to missclassify 𝑥
into any class other than its true class i.e., 𝑓𝜃 (𝑥) ≠ 𝑦 such that 𝑓𝜃 (𝑥) = 𝑦. For a targeted adversarial example
𝑥 , the adversary defines the target class 𝑦 in which it wants to have the target model classify the adversarial
example.

(3) Exploratory Attacks: In exploratory attacks, the adversary tries to gain as much knowledge as possible about
the learning algorithm of the target system and patterns in the training data.

We only consider evasion attack methods in our analysis, because we evaluate adversarial transferability at inference
time. The difficulty in mounting evasion attacks against a target system is heavily influenced by the knowledge an
adversary has about the target system. The extent of an adversary’s knowledge about the target system dictates the
setting in which it operates.

(1) White-box Setting: A white-box setting assumes that the adversary has complete knowledge about the target
system. It includes anything related to the target system such as dataset, model architectures, hyper-parameters
values, activation functions, number of layers, and model weight. This comprehensive knowledge about the
target system makes it easier for the adversary to mount successful evasion attacks. In this mode, the adversary
can compute adversarial examples using the target system and do not have to rely on the transferability property
of adversarial examples.

(2) Black-box Setting: In the black-box setting, the adversary has no knowledge of the target system. The adversary
only has access to an oracle to the target system to submit inputs and observe outputs. Evasion attacks in a
black-box setting exploit the transferability properties of adversarial examples to mislead the target system.

The difficulty of operating in a black-box setting is mitigated by exploiting the transferability property of adversarial
examples. In our threat model, adversary Bob operates in the white-box setting with respect to source system 𝑆1 and
black-box setting with respect to the target system 𝑆2. Hence, Bob depends on the transferability property of adversarial
examples computed using 𝑆1 to fool the target system 𝑆2.

2.3 Methods of Generating Adversarial Examples

The fundamental condition when computing adversarial example is that the perturbation 𝛿 = {𝛿1, 𝛿2, . . . , 𝛿𝑛} added
to the benign samples 𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} to get adversarial samples 𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} cannot be large. This
requirement is satisfied by bounding the adversarial perturbation 𝛿 with some adversarial budget 𝜖 using 𝑙𝑝−norms,
where 𝑝 ∈ {0, 1, 2,∞}. For a model 𝑓𝜃 , adversarial examples 𝑥 are defined as the solution to the following optimization
problem.

𝑥 = 𝑥 + argmin
𝛿

{∥𝛿 ∥ : 𝑓 (𝑥 + 𝛿) ≠ 𝑓 (𝑥)}𝑆 (1)

Here, ∥.∥ is a type of 𝑙𝑝−norm defined by the method used to compute adversarial examples. For two vectors 𝑥 and
𝑥 , 𝑙0 counts the number of elements in 𝑥 that has changed its values compared to 𝑥 , 𝑙2 measure the Euclidean distance
between the two vectors, and 𝑙∞ denotes the maximum changes for all elements in the vector 𝑥 .
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2.3.1 Fast Gradient Sign Method (FGSM). Fast gradient sign method (FGSM) was proposed in [14] and is one of the
simplest and computationally efficient method to compute adversarial examples. FGSM computes the adversarial
perturbation by calculating the gradient of the loss function of the model with respect to the input. This method solves
the following optimization problem to maximize the loss such that adversarial perturbations are bounded by 𝜖 subject
to 𝑙∞ norm.

𝑥 = 𝑥 + 𝜖 ∗ sign(∇𝑥 𝐽𝜃 (𝑥,𝑦)) (2)

Here, 𝐽𝜃 is the loss function, and ∇𝑥 denotes the gradient of the loss function with respect to the input 𝑥 , and 𝑦 is
the actual label [9]. For targeted examples, FGSM minimizes the loss function with respect to input 𝑥 such that the
modified input is classified into the target class 𝑦 specified by the adversary.

𝑥 = 𝑥 − 𝜖 ∗ sign(∇𝑥 𝐽𝜃 (𝑥,𝑦)) (3)

Notice the change in sign and also the presence of the target class 𝑦 in the optimization equation 3. For targeted case, we
are trying to find adversarial perturbations 𝛿 that decrease the loss of the model for the target class 𝑦 and for untargeted
case we find adversarial perturbations which increase the loss of the model in general.

2.3.2 Basic Iterative Method (BIM). Basic iterative method (BIM) is an extension to the fast gradient sign method and
runs FGSM 𝑛 number of times with a small step size. Iteratively running FGSM allows the adversary to search the
model input space thoroughly to find optimal perturbations.

𝑥0 = 𝑥

𝑥𝑛+1 = Clip𝑥,𝜖 {𝑥𝑛 + 𝛼 ∗ sign(∇𝑥 𝐽𝜃 (𝑥,𝑦))}
(4)

Here, 𝛼 is the step size and is usually defined as 𝛼 = 𝜖/𝑛. Clip𝑥,𝜖 (𝐴) denotes the element-wise clipping of 𝐴, such
that the range of 𝐴𝑖, 𝑗 after clipping is in the interval [𝑥𝑖, 𝑗 − 𝜖, 𝑥𝑖, 𝑗 + 𝜖]. The basic iterative method can also be used to
compute targeted adversarial examples by the simple modification of sign reversal and the introduction of the target
class in equation 4.

2.3.3 Jacobian-Based Saliency Map Attack (SMM). Jacobian-based saliency map attack (SMM) [30] finds features of
input 𝑥 that cause the most significant changes to the output of the model. SMM computes perturbations that induce
significant output variations such that a change in a small portion of features of 𝑥 foold the target model [39]. SMM
computes the Jacobian matrix of the given input 𝑥 to determine adversarial perturbations.

𝐽𝐹 (𝑥) =
𝜕𝐹 (𝑥)
𝜕𝑥

=

[
𝜕𝐹 𝑗 (𝑥
𝜕𝑥𝑖

]
𝑖𝑥 𝑗

(5)

Here, 𝐹 is the second-to-last layer logits of the neural network.

2.3.4 Carlini-Wagner Attack (CW). The Carlini-Wagner attack solves the following optimization problem to find
adversarial perturbations.

min ∥𝛿 ∥𝑝
subject to 𝐶 (𝑥 + 𝛿) = 𝑡, 𝑥 + 𝛿 ∈ [0, 1]𝑛

(6)
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where 𝐶 (𝑥) is the class label returned for input 𝑥 and the noise level is measured using either 𝑙0, 𝑙2 or 𝑙∞ norm. Carlini-
Wagner attack is considered one of the best evasion attack method and computes adversarial examples by finding the
smallest noise 𝛿 ∈ 𝑅𝑛𝑥𝑛 that changes the classification of the model to a class 𝑡 .

2.3.5 Momentum Iterative Attack (MIM). Momentum iterative attack method [12] integrates the concept of momentum
into the basic iterative method to generate adversarial examples for targeted and untargeted cases using 𝑙2 and 𝑙∞
norms respectively. The momentum is a technique for accelerating gradient descent algorithms by accumulating a
velocity vector in the gradient direction of the loss function across iterations [12]. The introduction of momentum helps
the method achieve optimum results faster by stabilizing update directions and escaping from poor local maxima.

3 APPROACH

We use human activity recognition as an example case for demonstration and validation of our experiments. Human
activity classification involves some type of sensor system such as a smartwatch, smartphone, smart shoes, chest band,
fitness band to detect and measure physical activities. The underlying machine learning algorithms use the data from
sensors to learn the characteristics of different activities. But depending on the properties of the sensors, the sensor
reading can differ significantly even though the sensors are trying to measure and detect the same physical phenomena.
This is because human activities are highly complex and dynamic processes dependent upon various factors. The sensor
readings for an activity vary significantly even if the same person performs the same activity under similar conditions
compared to say image classification where an image of a dog is always a dog independent of the presentation and
context. These variations in the sensor reading results in the trained machine learning algorithms learning unique
mappings between inputs and outputs, creating newer challenges and opportunities for an adversary that wants to
attack these systems.

3.1 Adversarial Transferability

From differences in the electrical properties of the sensor to the location of sensor on the human body, there are
numerous ways in which different aspects of the sensor systems can affect adversarial transferability. Therefore in this
work, we study adversarial transferability from the following four perspectives:

• Adversarial transferability between machine learning models
The transferability between different machine learning models trained on the whole or subset of the same
dataset is the default and the most discussed variety of adversarial transferability. To exploit this mode of
transferability, the adversary computes adversarial examples using one machine learning model and then
performs adversarial attacks on other models using the generated adversarial examples.

• Adversarial transferability across users
In sensor systems, the dataset used to train machine learning algorithms is collected using human subjects. This
is similar to an image dataset where images of various objects are captured using different types of cameras.
But what separates human subjects from the optical sensor in cameras is that human subjects inject biases
in the data that are personalized to each individual and are hard to eliminate with preprocessing. Attributes
associated with individuals gives the problem of adversarial transferability in sensor systems a new direction.
The adversary can leverage the biases injected by individuals to design better attack methods or suffer from this
when trying to attack a target system. Hence, evaluating adversarial transferability between machine learning
systems trained on data from different individuals becomes crucial.
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• Adversarial transferability across sensor body locations
Another important attribute of wearable sensor systems is the body location of the sensor. For example, activity
trackers can be worn in many different ways. Some can be worn as a wristwatch or wristband, others can be
clipped on to clothes and shoes or placed inside pockets, and some can be even worn as jewelry. For two sensors
of the same type - one wrapped around the subject’s chest and other worn on the wrist - the sensor readings
depend heavily on the orientation of the sensor and placement. These differences in the sensor readings affect
the mapping learned by machine learning model and consequently transferability of adversarial examples.

• Adversarial transferability between datasets
The final and most complex type of adversarial transferability is transferability between machine learning
systems - same or of different architectures - trained on different datasets. For example, in human activity
recognition different manufacturers use different types of sensors and collect proprietary datasets to train
machine learning algorithms. Now for an adversary which has access to system from one company, it is
challenging to attack a system from another manufacturer. The challenges can stem from subject bias, sensors
position, types of sensors, and data processing routines.

Fig. 3. Threat model in which an adversary operates with complete access to the source system 𝑆 but only oracle access to the target
system 𝑇 . The adversary has no knowledge about the target system and its properties, such as dataset used for training, type of
learning algorithm, and hyper-parameters of the model.

3.2 Threat Model

Depending on the type of adversarial transferability the adversary wants to exploit to attack the target system, the
adversary operates in different settings. In general, the threat model has two main components. The first part concerns
the target system 𝑇 , which the adversary wants to attack and the second part takes into account the source system 𝑆 .
The adversary can only send inputs to the target system and observe the class prediction, and hence operates in the
black-box setting with respect to the target system 𝑇 . The adversary has white-box access to the source system 𝑆 and
can compute adversarial examples using the source model 𝑆𝑚 . Here the objective of the adversary is to fool the target
system𝑇 on the adversarial examples computed using the source model 𝑆𝑚 . Fig 3 shows the graphical representation of
the threat model. In all four cases of adversarial transferability, the adversary computes adversarial examples using the
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source model 𝑆𝑚 trained on source dataset 𝐷𝑆 and attacks the target system 𝑇 with target model 𝑆𝑡 trained on dataset
𝐷𝑇 . In transferability between machine learning models 𝐷𝑆 and 𝐷𝑇 are same and for remaining cases of adversarial
transferability datasets 𝐷𝑆 and 𝐷𝑇 are different. In adversarial transferability across users, the source dataset contains
samples from a group of subjects and the target dataset contains samples from the remaining subjects. In adversarial
transferability across sensor body locations, the source dataset contains sensor reading from sensor placed at one body
position, for example right-wrist, and the target dataset contains sensor values from sensor placed at another body
position, say chest. Finally, in adversarial transferability between datasets, the source and target dataset are completely
different and have different distributions.

3.3 Measuring Adversarial Transferability

Measuring adversarial transferability means we want to determine how many adversarial examples designed for the
source system can fool the target system. For untargeted attacks we want to quantify how many input samples were
classified into any class other than the ground truth class and for targeted attack we want to measure how many
samples were classified into the target class. We introduce a new metric called Success Score (𝑆𝐶) to measure adversarial
transferability in both untargeted and targeted cases. Success score defined in percentage is the ratio of the number of
adversarial examples that were able to fool the target system (𝑁𝑡 ) to the total number of samples (𝑁 )

Success Score (SC) = 𝑁𝑡

𝑁
∗ 100 (7)

For untargeted case, 𝑁𝑡 is equal to the number of adversarial examples that are misclassified and for targeted case 𝑁𝑡

equals the number of adversarial examples that are classified into the target class. Misclassification means the output
label assigned to adversarial examples is different from label assigned to clean samples used to generate adversarial
examples. In the targeted case, success score is computed for adversarial examples generated from clean samples which
are not already classified into the target class. Furthermore, in both targeted and untargeted cases success score is only
computed for samples that failed to fool the target model without addition of adversarial perturbation.

3.4 Datasets

In our experiments, we have used three real-world human activity recognition datasets. We have conducted our
experiments with 3-axial accelerometer data.

(1) UCI dataset2 [2] was compiled from a group of 30 participants, each wearing a smartphone on their waist and
performing 6 different activities in a lab setting. Data from 3-axial accelerometer and gyroscope sensors were
sampled at a frequency of 50 Hz and pre-processed to remove noise.

(2) MHEALTH dataset3 [5] consists of body motion and vital signs recording of 10 volunteers of different profiles
while performing 12 different physical activities in an out-of-lab environment without any constraint, with the
exception that the subject should try their best when executing them. Shimmer2 wearable device placed on the
subject’s chest, right wrist, and left ankle were used to measure the motion experienced by the diverse body
parts using a 3-axial accelerometer at a frequency of 50 Hz. The class Jump Front & Back has fewer number of
samples compared to other classes. Therefore, to balance the dataset, we have removed the samples from the
Jump Front & Back class from our analysis.

2https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
3https://archive.ics.uci.edu/ml/datasets/MHEALTH+Dataset

https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/MHEALTH+Dataset
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(3) Daily Log (DL) dataset 4 [36] has accelerometer, orientation, and GPS sensor data collected from 7 individuals
using a smartphone and smartwatch with a self-developed sensor data collector and labeling framework.
Acceleration and orientation sensors were sampled at 50 Hz and GPS data was collected every 10 minutes. The
data was collected when participants were doing their daily routine and it was up the participants where the
device should be positioned on the body. We randomly select subset of the data to use in our experiments such
that each activity class has the same number of samples.

Table 1. Characteristics of the three datasets used in the analysis (# denotes “number of”).

Dataset # Subject # Activities Frequency Window Size (Seconds) # Devices # Samples
UCI 30 6 50 Hz 2.56 1 10299

MHEALTH 10 12 50 Hz 2.56 3 5133
DL 7 6 50 Hz 2.56 2 16434

Now we establish some conditions so that the analysis of different types adversarial transferability across the datasets
is possible and sound.

(1) Sampling Frequency: One of the criteria we used to select datasets for our experiments is the sampling
frequency of the sensor. For all real-world datasets used in this paper, the sampling frequency is 50 Hz, which is
considered adequate for human activity recognition [24].

(2) Input Size: The length of the input window segment in all datasets must be the same because we cannot train
machine learning algorithms with variable input sizes. In our experiments, we have set the length of the raw
sensor segment to 128, which corresponds to the window size of 2.56 seconds at sampling frequency of 50 Hz.
Setting the window size to 128 was motivated by the fact that a window size of 1 − 2 seconds with 50% overlap
is considered a good choice for activity classification [4].

(3) Data Scaling: The range of values in the three datasets are very different. We used the MinMaxScaler with
range set to [-1.0, 1.0] from the sklearn library [31] to standardize all three datasets. MinMaxScaler is the least
disruptive to the information in the original data and preserves the shape of the data and does not reduce the
importance of outliers.

(4) Activity Classes: Another important factor when choosing datasets for our experiments was the activity
classes. The baseline condition was that there should be some activity classes that are common for all datasets
allowing us to analyze targeted adversarial transferability between datasets. The activities walking, sitting,
standing and climbing stairs (walking up) are common to all three datasets. Also, having activities classes that
are not common between the datasets further helps us analyze transferability with generalization.

4 EXPERIMENTAL RESULTS

In this section, we discuss our experiments and results. We discuss four cases of adversarial transferability, and for
each case we present results for both targeted and untargeted evasion attacks. The CleverHans [27] library was used
to compute adversarial examples with the following parameters: 1) adversarial perturbation budget from the set
𝜖 ∈ [0.1, 0.25, 0.5, 0.9], 2) range clipping of adversarial examples set to [−1.0, 1.0], 3) number of iterations for basic
iterative method and momentum iterative method set to 50. Also, for iterative methods the perturbation budget per
iteration is 𝜖/50.
4https://sensor.informatik.uni-mannheim.de/#dataset_dailylog

https://sensor.informatik.uni-mannheim.de/#dataset_dailylog
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4.1 Adversarial Transferability Between Machine Learning Models

To analyze the adversarial transferability between machine learning models, we trained six different machine learning
algorithms for a common dataset and computed adversarial examples using one of the trained model. We used the
feature data of all three datasets for training the machine learning algorithms. Using the feature data enabled us to
train different kinds of machine learning algorithms, which is not possible using the raw sensor data. We computed 45
statistical features commonly used in HAR [40], from sensor segments of all three datasets. We selected the following
algorithms to evaluate adversarial transferability between machine learning models: 1) Support Vector Classifier (SVC),
2) Random Forest Classifier (RFC), 3) K-Nearest Neighbor Classifier (KNN), 4) Decision Tree Classifier (DTC), 5) Logistic
Regression Classifier (LRC), and 6) Deep Neural Network (DNN). The deep neural network (DNN) has 3 layers with
64, and 32 neurons in the first and second layers. In the last layer the number of neurons is equal to the number of
activity classes for the respective dataset. 𝑙2-regularization with coefficient 0.001 and ReLU activation is used in the
first and second layers, and the output layer has Softmax activation. TensorFlow [1] was used to train the deep neural
network with hyper-parameters: 200 epoch, mini-batch size of 32, Adam [18] optimizer with learning rate 0.001, and
sparse categorical cross-entropy loss. All other classifiers were trained using the sklearn library [31]. The maximum
iteration for SVC was set to 5000 with scaled gamma, and the number of estimators for RFC was set to 100. For logistic
regression, the LBFGS solver was used with 5000 maximum iterations and for K-Nearest Neighbors the number of
components was set to 5. All other parameters of classifiers were left to their default values.

Table 2. Classification accuracy of different machine learning algorithms on the training and test set of all three datasets.

ML
Algorithms

SVC
RFC
KNN
DTC
LRC
DNN

UCI
Train Set Test Set
76.20% 76.38%
100.0% 84.85%
84.85% 79.10%
100.0% 72.93%
75.49% 76.54%
84.90% 82.05%

MHEALTH
Train Set Test Set
90.40% 90.46%
100.0% 96.39%
97.56% 96.07%
100.0% 92.22%
91.15% 89.90%
99.25% 97.19%

DL
Train Set Test Set
87.79% 87.61%
100.0% 89.87%
91.96% 87.90%
100.0% 85.08%
86.12% 85.66%
94.75% 89.82%

Table 2 shows the classification accuracy of all trained models on the training and test set for the three datasets. In
general, all trained models have very high classification accuracy on training and test sets. To evaluate these classifiers
for adversarial transferability between machine learning models, we computed targeted and untargeted adversarial
examples using the DNN model - the source model. We choose the DNN model, because evasion attacks methods
based on gradient optimization are more mature and there are large number of successful attack methods available
for neural networks [8, 14]. There are some adversarial attack methods that can compute adversarial examples with
non-parametric models such as decision trees and k-nearest neighbors [29, 38] and we explore these attacks later in our
discussion section. For targeted attacks, we selected the “Sitting” activity class as the target class because it is common
across all three datasets.

Figures 4, and 5 shows the success score of untargeted and targeted adversarial examples for the UCI and DL datasets.
Different adversarial attack methods were used to generate adversarial examples for the perturbation budget of 𝜖 = 0.5
using the DNN model. Each number in the heatmap, shows the success score of adversarial examples computed using
the attack method specified by the column index on the machine learning model denoted by the row index. For example,
in figure 4 the success score of untargeted adversarial examples computed with adversarial attack BIM on the SVC
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Fig. 4. Success score of adversarial examples computed with the UCI dataset for transferability between models.

model is 84.78% and the success score of targeted adversarial examples is 35%. The results for the MHEALTH dataset
was found to be very similar to the UCI dataset, and is presented in supplementary section.

Fig. 5. Success score of adversarial examples computed with the DL dataset for transferability between models.

In general, we found high adversarial transferability between machine learning models for untargeted adversarial
examples. For targeted attacks, adversarial examples were less transferable for all three datasets. In particular, we
found DTC, KNN, and RFC classifiers to be more robust towards targeted adversarial examples for UCI and MHEALTH
datasets. We also found that the level of adversarial transferability between machine learning systems differed greatly
across the three datasets. For the DL dataset, both targeted and untargeted adversarial examples were less likely to be
transferable with targeted transferability success score values of 0.0% in many cases. We believe the lower success score
of targeted adversarial examples in general is due to fundamental differences between the targeted and untargeted
attacks. An untargeted attacks is considered successful if an input is classified into any class other than its actual
class but for the targeted attack to be successful the input must be classified into the target class by the target system.
Hence, targeted attack are much more difficult and an adversary will have higher success score for untargeted attack
compared to targeted attack at the same level of perturbation budget and source and target models attributes. Also,
we suspect the lower success score for the DL dataset is due to nature of the dataset. The DL dataset was collected in
daily-living conditions while participants were following their daily routine with greater degree if flexibility compared
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to the MHEALTH and UCI dataset. Collecting sensor data in daily-living conditions can induces noise and artifacts in
the sensor data and as a result different learning algorithms will learn different mappings between input and output.
Furthermore, no data preprocessing is applied to the DL dataset but both UCI and MHEALTH dataset undergo noise
removal and filtering. Consequently, adversarial transferability which aims to capitalize on the common input-output
mappings shared by different machine learning algorithms to fool a target system on adversarial examples computed
using the source system suffers greatly.

4.2 Adversarial Transferability Across Users

All three datasets have subject ID associated with each row of sensor readings or data files. We randomly selected data
from half the subjects to create the dataset for the source system (source dataset) and the data from the remaining
half subjects is used in the target system (target dataset). Table 3 shows the properties of source and target sets for all
three datasets. We also decided to use 1−D Convolutional Neural Network (CNN) for both source and target system
machine learning algorithm because of its simplicity and superior performance. CNN allows us to use the raw sensor
data directly to train the model without needing to compute features from the sensor segments. The input CNN layer
has 100 filters, kernel size of 10, and strides of 2. The second CNN layer layer has 50 filters and kernel size of 5. The
third layer is a 1−D Global Max Pooling, which is followed by a fully-connected layers with 64 neurons and drop-out
coefficient of 0.3. The last layer is also a fully-connected layer with the number of neurons equal to the number of
activity class defined by the dataset. ReLU activation is used in all layers except the output layer, which uses Softmax
activation function. The CNN model is trained using the Adam [18] optimizer with a learning rate of 0.001. The loss of
the model is computed using the categorical cross-entropy loss function.

Table 3. Details about the source and target dataset fashioned by randomly selecting subjects data for the UCI, MHEALTH, and DL
datasets. Here, # means “number of”.

Dataset # Samples # Subjects # Source Subjects # Source Samples # Target Subjects # Target Samples
UCI 10299 30 15 5138 15 5161

MHEALTH 5133 10 5 2464 5 2527
DL 16434 7 3 9918 4 6516

Table 4 shows the classification performance of the source and target system of UCI, MHEALTH, and DL datasets
on their respective source and target sets. For UCI and MHEALTH datasets, the source and target models have high
classification accuracy on both source and target datasets. High classification accuracy between source and target
systems demonstrates high level of generalization between source and target systems. Therefore, in theory cross user
adversarial transferability should be high for the UCI and MHEALTH datasets because source and target systems share
common knowledge and an adversary should be able to exploit these common mappings to fool the target system
using adversarial examples computed using source system. On the other hand, the classification accuracy is low for
the DL dataset implying less shared knowledge between source and target systems and consequently predicting poor
adversarial transferability.

Figures 6 and 7 shows the success score of untargeted and targeted adversarial examples for UCI and DL datasets
computed using five attack methods at four values of adversarial perturbation budgets 𝜖 ∈ {0.1, 0.25, 0.5, 0.9}. For
targeted attacks, the activity class “Sitting” is used as the target class. Untargeted adversarial examples were highly
transferable to the target system in all three cases. But untargeted success score for the DL dataset was lower compared
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Table 4. The classification accuracy of source and target models on the training and test set of all three datasets.

Machine Learning
System
Source
Target

UCI
Source Set Target Set
81.49% 61.42%
62.43% 85.58%

MHEALTH
Source Set Target Set
99.66% 66.55%
81.37% 99.72%

DL
Source Set Target Set
81.74% 25.28%
34.09% 86.05%

to the UCI and MHEALTH dataset, indicating consequent of low generalization we observed between the source and
target system for the DL dataset. Targeted adversarial examples were unsuccessful in all three cases, confirming that the
individual characteristics encoded in the sensor data from each subject can greatly affect the adversarial transferability.
The results for MHEALTH dataset is available in the supplementary materials.

Fig. 6. Success score of adversarial examples on source and target systems with the UCI dataset for transferability across users.

Fig. 7. Success score of adversarial examples on source and target systems with the DL dataset for transferability across users.

4.3 Adversarial Transferability Across Sensor Body Locations

The MHEALTH dataset has readings from accelerometers placed at three different body positions. The first sensor
is wrapped around the subject chest, the second is worn by the subject on the right wrist, and the last one is worn
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on the left ankle. All sensors have same physical and electrical characteristics. To evaluate adversarial transferability
across sensor body locations, we perform experiments with different choice of sensor locations for the source and target
systems. In the first case, the data from the chest sensor is used to train the source system and the data from the ankle
sensor is used to train the target system. In the second case, the data from the wrist sensor is used to train the source
system and the data from the chest sensor is used in the target system. Finally, we have data from ankle sensor used in
the source system and data from wrist sensor is used to train the target system. Also, we use the same architecture of
CNN used for transferability across subjects for the source and target models.

Table 5. The classification accuracy of source and target systems on the source and target datasets for all three cases of sensor body
positions. For example, the table for Chest - Ankle shows the classification accuracy of the Chest source system and Left-Ankle
target system on both chest and left-ankle datasets.

Machine Learning
System
Source
Target

Chest Vs. Left-Ankle
Source Set Target Set
98.81% 12.20%
18.75% 96.75%

Right-Wrist Vs. Chest
Source Set Target Set
99.67% 18.69%
23.58% 99.17%

Left-Ankle Vs. Wrist
Source Set Target Set
98.55% 22.06%
19.89% 99.43%

After training the source and target model on their respective datasets obtained from sensors placed at different body
locations, we evaluate the trained source and target models on both datasets. Table 5 shows the classification accuracy
of these models on both datasets. In all cases, the classification accuracy of the source model on the target dataset and
the target model on the source dataset is low, indicating low generalization between the source and target systems.

4.3.1 Chest Vs. Left-Ankle. Figure 8 shows the success score of untargeted and targeted adversarial examples computed
using the chest (source) system on the chest and left-ankle (target) system. We found good transferability for untargeted
attacks and very low transferability for targeted attacks for the target activity class of “Sitting”. Untargeted adversarial
examples with success score upto 100% on the source model performed fairly well, success score in the range 0% − 40%,
on the target model. The adversarial transferability further decreased for targeted attacks with success score of almost
0% on the target system while the success score was in the range of 20% − 100% on the source system.

Fig. 8. Success score of adversarial examples computed using the source system (Chest) on source and target (Left-Ankle) systems.
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4.3.2 Right-Wrist Vs. Chest. Figure 9 shows the success score of untargeted and targeted adversarial examples com-
puted using the right-wrist (source) system on the right-wrist and chest (target) system. We found high adversarial
transferability for both untargeted and targeted attacks, with untargeted success score upto > 90% and targeted success
score upto 80% for the target class of “Sitting“ on the target system.

Fig. 9. Success score of examples computed using the source system (Right-Wrist) on source and target (Chest) systems.

The above results shows that adversarial transferability differ greatly with the sensor body locations for source and
target systems. If the sensors for the source and target system are located near to each other, for example in the case
of Right-Wrist Vs. Chest, adversarial examples was able to fool the target system fairly well. But for source and target
sensors placed far-apart on the body, in the case of Chest Vs. Left-Ankle and Left-Ankle Vs. Right-Wrist, the transferability
of adversarial examples was low. Specifically, the success score of targeted adversarial examples was almost 0% for all
attack methods at all values of adversarial perturbation budgets. The results for the case Left-Ankle Vs. Right-Wrist is
provided in supplementary section.

4.4 Adversarial Transferability Between Datasets

Transferability between datasets includes all other types of transferability we have discussed so far and augments that
with new variables such as sensor types, electrical properties of the sensor, and data processing steps. To evaluate
adversarial transferability between datasets, we train source and target CNN models of same architecture and hyperpa-
rameters on different datasets. Since, we have three different datasets to evaluate adversarial transferability we have
three different combinations for evaluation. Each of the combination assigns different dataset to the target and source
systems. In the first experiment, we assigned the UCI dataset to the source system and the MHEALTH dataset to the
target system. Table 6 shows the success score of untargeted and targeted adversarial examples for this case. In the
second case, the DL dataset was assigned to the source system and the target system was trained on the UCI dataset.
Table 7 shows the success score of untargeted and targeted adversarial examples for the second case. Finally, in the third
case the source system was trained on the MHEALTH dataset and the target system was trained on the DL dataset. The
result for the third case can be found in the supplementary section. The success score were very similar to results for
the first case of UCI source dataset and MHEALTH target dataset. We found poor adversarial transferability in the first
case with highest untargeted success score of 40.23% at highest perturbation budget. The targeted success scores was
0% for all configurations. In the second case, we found untargeted success score up to 82% and highest targeted success
score of 11.70%. The low adversarial transferability observed in this case demonstrate that with greater distinction
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between source and target systems the adversarial transferability decreases sharply. One interesting thing to note here
is that targeted adversarial examples were more transferable at lowest adversarial perturbation budget (𝜖 = 0.1) and
untargeted adversarial examples were most transferable at highest value of adversarial perturbation budget (𝜖 = 0.9).

Table 6. Success score of adversarial examples computed using the source (UCI) system on the source and target (MHEALTH) systems.

Evasion
Attack
Methods
FGSM
BIM
MIM
SMM
CW

Untargeted Attack Perturbation Budget (𝜖)
0.1 0.25 0.5 0.9

Source Target Source Target Source Target Source Target
74.09 0.11 84.15 0.85 87.65 11.96 89.74 36.15
86.91 0.19 96.89 0.62 97.86 8.03 97.94 25.78
86.79 0.19 96.07 0.97 96.50 13.09 96.07 40.23
51.84 0.11 78.17 0.11 92.73 0.11 96.07 0.11
100.0 0.03 100.0 0.03 100.0 0.03 100.0 0.03

Evasion
Attack
Methods
FGSM
BIM
MIM
SMM
CW

Targeted Attack Perturbation Budget (𝜖)
0.1 0.25 0.5 0.9

Source Target Source Target Source Target Source Target
8.62 0.0 3.82 0.0 1.02 0.0 0.55 0.0
64.83 0.0 92.39 0.0 99.02 0.0 99.95 0.0
58.58 0.0 91.18 0.0 99.95 0.0 100.0 0.0
45.10 0.0 49.02 0.0 52.0 0.0 35.68 0.0
99.95 0.0 99.95 0.0 99.95 0.0 99.95 0.0

Table 7. Success score of adversarial examples computed using the source (DL) system on the source and target (UCI) systems.

Evasion
Attack
Methods
FGSM
BIM
MIM
SMM
CW

Untargeted Attack Perturbation Budget (𝜖)
0.1 0.25 0.5 0.9

Source Target Source Target Source Target Source Target
69.53 11.80 91.92 27.88 94.42 51.20 90.84 82.52
91.92 7.08 99.48 13.75 99.48 33.43 99.48 55.09
93.01 8.51 99.48 20.32 99.48 41.32 99.48 74.73
51.47 25.28 83.96 38.69 93.59 41.98 95.27 48.50
100.0 5.47 100.0 5.59 100.0 5.84 100.0 6.01

Evasion
Attack
Methods
FGSM
BIM
MIM
SMM
CW

Targeted Attack Perturbation Budget (𝜖)
0.1 0.25 0.5 0.9

Source Target Source Target Source Target Source Target
0.43 11.51 0.17 4.03 0.0 4.34 0.0 2.04
52.24 11.70 67.64 9.32 90.62 5.81 97.02 4.17
56.22 7.41 71.52 3.90 98.30 5.09 99.97 5.25
4.05 2.26 3.73 1.07 1.92 0.11 0.67 0.05
99.85 1.43 99.85 1.46 99.82 1.41 99.82 1.46

5 DISCUSSION

In this section, we discuss our results and provide theoretical and graphical explanations. We generate adversarial
examples using non-parametric machine learning algorithms such as Decision Tree Classifier (DTC) and K-Nearest
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Neighbor classifier (KNN) and measure adversarial transferability. We also discuss adversarial transferability through
the lens of non-robust features and manifold learning to provide explanation for our results and establish ideas for
future research. Discussion on manifold learning is presented in the supplementary section.

5.1 Adversarial Attacks with Decision Trees and K-Nearest Neighbors

In our analysis, we found KNN and DTC classifiers to be robust against targeted adversarial examples computed using a
Deep Neural Network (DNN) compared to other learning algorithms such as Support Vector Classifier (SVC) and Linear
Regression Classifier (LRC). To further evaluate the robustness KNN and DTC algorithms, we computed targeted and
untargeted adversarial examples using the KNN and DTC at the adversarial perturbation budget of 𝜖 = 0.5. We used the
Region Based Attack (RBA) [38] and heuristic decision tree attack (Papernot) [28] to compute adversarial examples
using the decision tree classifier. The region-based attack finds the closet polyhedron to an input where the classifier
predicts a label other than the actual label and outputs the closest point in this region as an adversarial example. Region
based attack is optimal and can find highly successful adversarial examples but suffer from high computational load.
Heuristic decision tree attack searches for leaves in the decision tree with different class in the neighborhood of the leaf
corresponding to the decision tree’s original prediction for an input. The path from the original leaf to the adversarial
leaf is used to modify the input sample to create an adversarial example. We used the Kernel Substitution Attack [28],
which uses the Fast Gradient Sign Method (FGSM), to craft adversarial examples misclassified by nearest neighbors
with the KNN model.

Fig. 10. Success score of adversarial examples computed using the Decision Tree Classifier (DTC) on different machine learning
models.

Similar to the case of adversarial transferability between machine learning models, we trained 6 different machine
learning algorithms on the feature data of the UCI dataset, and computed adversarial examples using DTC and KNN
models. Figure 10, shows the success score of untargeted and targeted adversarial examples computed using the DTC
model on all 6 machine learning models. Adversarial examples were able to fool the DTC model with good success
score (40%), but performed poorly on other models, indicating poor adversarial transferability in both targeted and
untargeted cases. We also want to highlight the difference in the success score of adversarial examples computed using
the DNN model in section 4 and adversarial examples computed using the DTC model here. Figure 11 shows the success
score of adversarial examples computed using the DTC with RBA method and DNN model with Basic Iterative Method
(BIM) on all 6 machine learning models. As we can see, adversarial examples computed using the DNN model are
more successful on the DTC, compared to adversarial examples computed using the DTC for the same adversarial
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Fig. 11. Success score of adversarial examples computed using the Decision Tree Classifier (DTC) and Deep Neural Network (DNN)
on different machine learning models.

perturbation budget. Furthermore, adversarial examples computed using the DNN model are more transferable than
adversarial examples computed using the DTC.

Table 8. Success score of untargeted adversarial examples computed using the k-Neareat Neighbor (KNN) model on different machine
learning models.

Machine Learning Models
SVC RFC KNN DTC LRC DNN

Success Score (%) 85.74 89.82 86.01 85.32 86.40 77.35

Table 8 shows the success score of untargeted adversarial examples computed using the KNN model on all 6 machine
learning models. The adversarial examples are highly transferable and the success score are similar to that obtained
with adversarial examples generated using the DNN as shown in section 4. Therefore, KNN model is more vulnerable
compared to the DTC model at the same level of adversarial perturbation budget and adversarial examples computed
using the KNN model is more transferable than DTC. However, adversarial attack methods that works with non-
parametric learning algorithms such as DTC and KNN are much more computational intensive compared to gradient
based adversarial attack method and computed adversarial examples are also less successful and transferable. Hence,
for sensor systems with computation and resource limitations, a direct attack on non-parametric learning algorithms
might not be feasible. An attacker is better off using gradient based attack methods to compute adversarial examples
using the source systems and then attack the target system by exploiting the transferability of adversarial examples.

5.2 Feature Overlap

Authors in [17], have argued that neural networks trained on independent samples from a distribution tend to learn
similar “non-robust” or brittle features making adversarial transferability possible. The central thesis is that data samples
used to train machine learning model and used by an adversary belong to the same distribution. Therefore, models
trained on similar data distributions have strong transferability between them, and models trained on distinct data
distributions have weak transferability. This is because similar data distributions facilitate the learning of similar
non-robust features and different data distribution has minimal overlap between the corresponding non-robust features.
In adversarial transferability cases we have analyzed in this work, the data distribution of source and target systems
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have varying degree of overlap. In transferability between models, all models are trained on the same dataset. This
allows the models to learn similar non-robust features resulting in excellent adversarial transferability. On the other
hand, in transferability between datasets, source and target models are trained on datasets from different distributions.
In this case, trained models have minimal overlap between learned non-robust features and consequently the adversarial
transferability is poor. To verify this, we evaluated the target model on the test set of the source model. The performance
of the target model on the source model’s test set in theory is correlated with learned features shared between them.
Higher classification accuracy of the target model on the source model test set implies learning of similar features, and
lower classification accuracy demonstrates learning of different features between the source and the target model. The
degree to which the target and source model share learned features is proportional to the performance of the target
model on the adversarial examples computed using the source model.

Fig. 12. The classification accuracy of the target model for different cases of transferability on the test set of the source model Vs. the
success score of targeted adversarial examples computed using the Basic Iterative Method (BIM) on the target model.

Fig 12 shows the classification accuracy and success score of the target model on the source model test set and
targeted adversarial examples computed using the source model with the Basic Iterative Attack (BIM). The performance
of the target model on the source model test set was found to be directly proportional to the target model’s success
score on adversarial examples. Higher classification accuracy on the test set corresponded to a higher success score on
adversarial examples and vice-versa. Hence, the degree to which features are shared between target and source models
is directly related to the effectiveness of adversarial examples on the target model. Learning of similar features by target
and source models facilitates better adversarial transferability, as demonstrated in transferability between models and
transferability across subjects. On the other hand, when target and source models have less overlap between learned
features, the adversarial transferability is poor as found in transferability across sensor locations and transferability
between datasets.

6 CONCLUSIONS

Adversarial examples are shown to be transferable across machine learning models trained on the whole or subset of the
same dataset. However, the problem of adversarial transferability does not end there. For the first time in literature, we
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have investigated novel types of adversarial transferability in the context of wearable sensor systems with an extensive
set of experiments. These new aspects of adversarial transferability show how an adversary can exploit sensor systems
properties to craft adversarial examples in ways not discussed before. Our results not only demonstrate that there exist
many new types of adversarial transferability but also show where and how these newer modes of transferability excel
and fail.

We first evaluated the general case of transferability between machine learning models. Using the feature data
from three real-world datasets, we found high untargeted transferability between different types of machine learning
models with five attack methods. For targeted attacks, adversarial examples were less transferable for all three datasets
with highest success score of 76%. We also found non-parametric learning algorithms such as Decision Tree Classifier
(DTC) and k-Nearest Neighbors (KNN) to be more robust compared to other types of learning algorithms. The level
of targeted transferability differed greatly across the three datasets. For Daily-Living (DL) dataset, both targeted and
untargeted adversarial examples were much less likely to be transferable compared to UCI and MHEALTH datasets. The
underlying reasons behind the low adversarial transferability for the DL dataset is due to the large number of samples,
data collection in daily living condition, and no preprocessing steps for sensor data. These properties make adversarial
examples less transferable because different learning algorithms learns different mappings between input and outputs.

For cross user transferability, we randomly selected data from half the subjects to create the source dataset and the
data from the remaining half subjects was used as the target dataset. We separated all three datasets in this way and
evaluated adversarial transferability across users. We discovered that the level of generalization between the source and
target systems greatly affected the transferability of adversarial examples. For UCI and MHEALTH datasets, we found
high level of generalization as indicated by the high classification accuracy of the source model on the target dataset
and the target model on the source data. Consequently untargeted adversarial examples were highly transferable. For
the DL dataset, we found low level of generalization between the source and target systems and as a result low levels of
untargeted adversarial transferability. Targeted transferability was low for all three datasets and for the DL dataset
success score of targeted adversarial examples was 0% at all levels of perturbation budget. Low targeted adversarial
transferability performance indicates that the individual characteristics of users have significant bearings on adversarial
transferability. Personalizing a model for an user will not only make the model achieve high performance on the user
data but also make the model secure against adversarial transferability attacks.

Next, we evaluated the transferability across sensor body positions using the data from sensors placed at chest,
left-ankle, and right-wrist. The adversarial transferability differed greatly based on source and target systems sensor
body locations. For source and target systems sensors that were located near to each other, for examples right-wrist
and chest, adversarial examples generated using the source system were highly transferable to the target system for
both targeted and untargeted attacks. But for source and target systems sensor that were placed far-part, for example
left-ankle and chest, the transferability of targeted adversarial examples was low. In the last experiment, we analyzed
transferability across datasets. All three datasets have some common activity classes between them and some unique
activity classes. For different combinations of source and target datasets, we found very low untargeted and targeted
adversarial transferability for the entire spectrum of analysis.

In this work, we explored novel directions of adversarial transferability in the context of wearable sensor systems
and showed how an adversary’s performance varies in different transferability settings. In general untargeted attacks
were more successful than targeted attacks. Untargeted attacks are considered successful as long as they can achieve
random misclassification, which is much easier to achieve. The nature of the time-series input to sensor systems makes
them more vulnerable to random misclassification because the data they operate on have properties that are easier to
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exploit. However, the complexity of adversarial attacks increases significantly in the targeted case. For targeted attacks,
the attack methods have to find adversarial perturbations that need to conform to the temporal and spatial properties
present in the dataset for the chosen target class. Due to this, the targeted transferability was very poor in most cases.
Also, the main requirement of adversarial transferability is to have shared knowledge between the source and target
systems. Irrespective of the learning algorithm, shared learning is facilitated when source and target datasets overlap
along some dimensions such as processing routines, sensor type, sensor location, and population group. Hence, for an
adversary to be successful it should take into consideration common attributes between the source and target systems
and create adversarial examples that exploit these common attributes to have a higher chance of fooling the target
system. In particular, our findings can be summarized as follows.

(1) The traditional notion of transferability across machine learning models showed excellent results which is
consistent with the literature. But we also discovered that the properties of the underlying data distribution and
properties of sensor system design such as the number of samples, context (in-lab or real-world) in which the
dataset was collected, and preprocessing steps greatly affects adversarial transferability.

(2) We found gradient-based attack methods to be more competent at finding transferable adversarial perturbations
compared to non-gradient based methods. Non-parametric learning algorithms such as decision tree and
k-nearest neighbor were more robust against targeted and untargeted adversarial examples computed using
both gradient and non-gradient based attack methods. Furthermore, adversarial examples computed using deep
neural network were more successful on these algorithms than adversarial examples computed using them.

(3) Individual characteristics of users greatly affect targeted adversarial transferability. Also, if the source and
target datasets are from the same population, then the sensor location of source and target systems becomes
important. Near source and target sensor locations facilitate higher adversarial transferability and vice-versa.

(4) In general, the extent to which the source and target systems properties overlap affects adversarial transfer-
ability. The properties of source and target systems are mainly governed by source and target datasets and
models. Datasets encode several attributes of wearable sensor systems such as sensor type, subjective biases,
preprocessing pipeline, sensor placement and orientation. Models represent types of learning algorithms and
attributes of the algorithm. Adversarial transferability depends on the shared knowledge between source and
target systems, and depending on the extent to which both systems share common mapping between inputs
and outputs adversarial transferability varies. In the case of transferability between models, the distinction
between source and target systems is only for the learning algorithms and in this case we found high untargeted
and targeted transferability. On the other hand, in the case of transferability between datasets, source and
target systems learning algorithms are the same, but source and target datasets are different. In this case, we
observed low transferability for both untargeted and targeted attacks. Therefore the main reason for adversarial
transferability is the similarity between source and target datasets. By increasing the distance between source
and target datasets using design principles or post-processing techniques, adversarial transferability can be
significantly reduced.

7 RECOMMENDATIONS

In this section, we provide recommendations aimed at a system designer for designing robust embedded systems based
on our results and findings. These recommendations can be considered as design choices that can affect the adversarial
robustness of a sensor system.
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(1) The fundamental reason for the robustness of the target system against adversarial transferability was the
distance between the source and target data distributions. With the increasing level of distance between the
source and target data distribution as shown in section 5.1, the adversarial transferability decreased and reached
a success score of 0%. Hence, when designing and developing embedded sensor systems it is recommended to
use proprietary or private datasets. If it is not possible to use private datasets, data processing techniques such
as Principal Component Analysis [6], removing non-robust samples from the dataset [38] and noise addition
should be used as preprocessing steps on the dataset to learn a robust classifier.

(2) Personalizing machine learning models for a user, often needed in sensor system applications, shows the
potential of not only improving the model performance for the user but also make the model robust against
adversarial attacks.

(3) Sensor system trained on a large real-world dataset was discovered to bemore robust to adversarial transferability
compared to a system trained with smaller lab-setting datasets. In our analysis, target systems that used the
Daily Living (DL) dataset (sample size 16434) were more robust towards both untargeted and targeted adversarial
examples than target systems that used the UCI dataset (sample size 10299) and the MHEALTH dataset (sample
5133). Hence, it is better to have a large dataset for a robust system from an adversarial transferability point of
view.

Finally, we want to draw the reader’s attention to the argument that machine learning systems can be protected
by access control, and very few cases of adversarial attacks can happen in real-world wearable systems. However, by
limiting our understanding of vulnerabilities that exists in sensor systems by operating on the default setting that
adversarial attacks on embedded systems have a low chance of occurrence is not prudent. If we ignore the discussion of
adversarial attacks and transferability by operating on the default setting, we will be blind to the inherent shortcomings
of our systems, which can be detrimental to the overall health of our systems. For example, consider a fall detection
system used to dispatch help when the system detects falls. If an adversary can influence any aspect of this system,
then the effect can have life-altering consequences. Furthermore, recent works have shown that adversarial attacks are
possible in real-world conditions, and the transferability of adversarial examples dramatically enhances the chances
of success for an adversary [13, 15, 16, 23]. Also, the decision-making model needs not to be present locally on the
device. The model can be in the cloud, and the system operate by querying the cloud model with sensor readings for
classification [10, 32]. This mode of operation is becoming more mainstream as it provides many benefits, such as
life-long learning, active learning, and data analytics. Therefore, acknowledging and understanding the adversarial
nature of machine learning algorithms used in embedded sensor systems allow us to build measures and adapt the
design process to thwart and limit the impact of adversarial attacks. This is precisely what we aimed to achieve in this
work. By making the connection between adversarial transferability and different aspects of embedded sensor systems,
we showed where the strengths and limitations of an adversary lie and how a system designer can use this information
to design and build robust and reliable embedded systems.

8 LIMITATIONS AND FUTUREWORK

In this work, we have tried to cover the topic of adversarial transferability in embedded systems in a broad manner.
Nonetheless, our work does have some limitations, which we have highlighted below.

• In our experiments, we have used five different adversarial attack methods to evaluate adversarial transferability
in embedded sensor systems. However, there are many more attack methods in the literature that we have
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left out of our discussion. Unexplored attack methods with better optimization strategies may be able to find
adversarial perturbation with better transferability properties and succeed where the discussed attack methods
have failed.

• The discussion of adversarial machine learning is not complete without talking about defense against adversarial
attacks. Attack and defense form the two faces of the adversarial machine learning coin, and hence should
be given equal importance and attention in research. Our discussion in this work does not discuss defense
mechanisms, and we aim to explore the effects of defense methods against adversarial transferability in our
future works.

• In this work, we have only discussed the level of performance of different attack methods in terms of transfer-
ability. One interesting question that we can ask based on our results is, “What makes some attack methods to
have higher or lower rates transferability than others?”. This is one of the fundamental questions that need to
be investigated to better understand the results obtained in this work.

Finally, we want to touch upon the indistinguishability of signals and the requirement of adversarial perturbation
budget in the case of sensor systems. We know that adversarial examples are computationally created inputs not signifi-
cantly different from samples in the target data distribution. However, signals lacks the observational understanding
present in samples from domain such as computer vision. It is difficult and almost impossible to understand a signal by
observation without some operation to quantify its properties. Hence, in signal domain adversarial examples extends
the traditional definition and encompasses a broad spectrum of generation schemes. For example, an attacker can send
any signal conforming to the characteristics of the target class without any other consideration and any good target
model will be fooled. Also, the lack of understanding of signals makes it almost impossible to determine whether an
input signal is adversarial or not just by observation without knowing the actual ground truth label. Perturbation
budget also plays an role in defining the extent to which an adversarial example can differ from actual samples from
the data distribution. Therefore in signal domain, the requirements of perturbation budget need further analysis.
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A DATASETS ACTIVITY DISTRIBUTION

Fig 13 show the class distribution of all three datasets used in the analyses. The class distribution is fairly balanced for
all three datasets.

Fig. 13. Activity distribution of the three datasets (best viewed in color)

B TRANSFERABILITY BETWEEN MACHINE LEARNING MODELS - MHEALTH DATASET

Fig 14 shows the success scores of untargeted and targeted transferability between models for the MHEALTH dataset.
We found high level of untargeted transferability with all attack methods except the Carlini-Wagner attack. Also,
targeted transferability was high reaching success scores up to 76.77%.

Fig. 14. Success score of untargeted and targeted adversarial examples for the MHEALTH dataset.

C TRANSFERABILITY ACROSS USERS - MHEALTH DATASET

Fig 15 shows the success scores of untargeted and targeted transferability across users for the MHEALTH dataset. The
activity class “Walking” was used as the target class. We found high level of untargeted transferability, but targeted
transferability was low at all level of perturbation budgets.



1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Ramesh Kumar Sah and Hassan Ghasemzadeh

Fig. 15. Success score of adversarial examples on source and target systems with the MHEALTH dataset for transferability across
users.

D TRANSFERABILITY ACROSS SENSOR BODY LOCATIONS - LEFT - ANKLE VS. RIGHT-WRIST

Figure 16 shows the success score of untargeted and targeted adversarial examples computed using the left-ankle
(source) system on the left-ankle and right-wrist (target) systems. Similar to Chest Vs. Left-Ankle case, we found high
untargeted transferability, success score upto 98%, and very low (0%) targeted transferability for the target class of
“Sitting“.

Fig. 16. Success score of adversarial examples computed using the source system (Left-Ankle) on source and target (Right-Wrist)
systems.

E TRANSFERABILITY BETWEEN DATASETS - DL VS. MHEALTH

Tables 9 and 10 shows untargeted and targeted transferability for the case of source MHEALTH dataset and target
DL dataset. Similar to UCI Vs. MHEALTH case, we found good level of untargeted transferability but no targeted
transferability at all of perturbation budgets.
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Table 9. Success score of untargeted adversarial examples computed using the source (MHEALTH) system on the source and target
(DL) systems.

Evasion
Attack
Methods
FGSM
BIM
MIM
SMM
CW

Untargeted Attack Perturbation Budget (𝜖)
0.1 0.25 0.5 0.9

Source Target Source Target Source Target Source Target
64.58 24.35 83.33 30.84 90.30 30.60 92.54 31.25
80.76 21.47 99.83 33.89 99.91 36.21 100.0 38.46
82.69 25.56 99.43 32.37 99.91 35.25 100.0 39.98
40.46 20.99 67.06 35.33 81.00 38.38 86.21 38.46
100.0 12.58 100.0 12.41 100.0 12.66 100.0 13.14

Table 10. Success score of targeted adversarial examples computed using the source (MHEALTH) system on the source and target
(DL) systems.

Evasion
Attack
Methods
FGSM
BIM
MIM
SMM
CW

Targeted Attack Perturbation Budget (𝜖)
0.1 0.25 0.5 0.9

Source Target Source Target Source Target Source Target
0.70 0.0 0.26 0.0 0.0 0.0 0.0 0.0
23.43 0.0 68.16 0.0 88.85 0.0 98.14 0.0
30.50 0.0 64.98 0.0 86.38 0.0 93.81 0.0
17.41 0.0 24.49 0.0 15.29 0.0 5.39 0.0
100.0 0.0 100.00 0.0 100.0 0.0 100.0 0.0

F MANIFOLD LEARNING

Manifold learning methods seek to describe high-dimensional data in low dimensional space. We usedMultidimensional

Scaling (MDS) [19] to generate low-dimensional representations of adversarial examples and clean samples. Multidi-
mensional scaling uses a pair-wise distance matrix as inputs and places each data point in an n-dimensional space such
that the distance between the points is preserved as well as possible. Albeit, the Euclidean distance suffers from the
curse of dimensionality when used to compute the distance between objects in high-dimensional space, it can still
be used to compute the similarity matrix between adversarial and clean samples. This similarity matrix is used by
multidimensional scaling to get the low-dimensional representation of the adversarial and clean samples. To compute
the low dimensional embedding, we used all samples from the target model’s training set for the target class and the
top-𝑘 samples from the targeted adversarial set that was classified into the target class by the target model. Here, 𝑘
is the number of samples selected from the target model training set, and we sort the prediction confidence of the
adversarial examples for the target class to determine the top-𝑘 examples. In cases where adversarial examples fail to
fool the target model, we take 𝑘 random samples from the adversarial set.

Fig 17 shows the multidimensional scaling of adversarial examples and benign samples from the target model’s
training set for different cases of adversarial transferability. For transferability between models, the 2-dimensional
representation of clean and adversarial samples share a significant overlap region, which corresponds to the high
targeted transferability we observed in this case. The region of overlap for transferability across subjects is not significant,
but the spatial distribution of adversarial and benign samples share shape and organization, which demonstrate the fair
transferability in this case. For transferability across sensor body locations and datasets, the representation of benign
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Fig. 17. Multidimensional Scaling of clean and adversarial samples for different cases of targeted adversarial transferability. Except
for transferability between models which was evaluated with 1D feature data, other types of adversarial transferability uses 3−axial
accelerometer data and hence we have plots of 𝑌 axis and 𝑍 axis for these modes of adversarial transferability.

and adversarial samples shares neither region nor organization and consequently we observed poor targeted adversarial
transferability for these cases in our results. The representation of clean and adversarial samples in 2−dimensional space
gives us insights about the transferability results we obtained in our experiments. Our aim here was to demonstrate
how the spatial distribution of adversarial and benign samples looks like for different cases of adversarial transferability
and explain the results we obtained from our experiments. The degree to which adversarial samples can conform to
benign samples from the target model’s training set is directly proportional to adversarial examples success score on
the target system.

G PERTURBATION SIZE AND ATTACK METHODS

Given that data in our experiments are scaled in the range [1,−1] and we have used adversarial perturbation budgets
up to 0.9, it is natural to assume that adversarial examples computed at higher perturbation budgets will be significantly
different from benign samples used to create such adversarial examples. However, this is only true for the Fast Gradient
Sign Method (FGSM) attack method because FGSM uses l-∞ norm and every entry in the input vector can be modified by
half the perturbation budget value. Other attack methods, for example Basic Iterative Method (BIM) which is an iterative
version of FGSM, behaves in a different way and find adversarial perturbation which are limited to perturbation budget
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allowed for each iteration. In our experiments, the number of iteration is set to 50, and consequently the perturbation
budget for all iterative methods per iteration will be 0.9/50 = 0.018. We have presented a visual demonstration in Figs
18 and 19. We computed untargeted and targeted adversarial examples using the FGSM and BIM attacks at different
level of adversarial perturbation budget. As expected, adversarial examples computed using the FGSM is very different
compared to the input and at higher perturbation budget this difference is significant. On the other hand, adversarial
examples computed using the BIM is very similar to the input even at high levell of perturbation budgets.

Fig. 18. Untargeted adversarial examples computed at different perturbation budgets with FGSM and BIM attacks. Image best viewed
in color.
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Fig. 19. Targeted adversarial examples computed at different perturbation budgets with FGSM and BIM attacks. Image best viewed
in color.
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