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* |learns generic representations of images on
an unlabeled dataset

What is SimCLR?

e fine-tuned with a small amount of labeled images to achieve
good performance
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e Sameclass --> similar embeddings

Contrastive Loss

e Different class --> dissimilar embeddings
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Loss function in SImCLR

* For a positive pair (i, j):
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where 15, € {0, 1} is an indicator function evaluating to
1 iff £ # ¢ and 7 denotes a temperature parameter. The fi-
nal loss is computed across all positive pairs, both (i, 7)
and (7,7), in a mini-batch. This loss has been used in
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Key Findings

e Previously we need to change the architecture, Now data augmentation
(Random Cropping) is enough to learn the contrastive representation

Data Augmentation:

Large Batch Size

More Training Epoch

Wider Network




Augmentation

(a) Global and local views. (b) Adjacent views.

Figure 3. Solid rectangles are images, dashed rectangles are ran-
dom crops. By randomly cropping images, we sample contrastive
prediction tasks that include global to local view (B — A) or
adjacent view (D — (') prediction.

(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure 4. Ilustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal
rarameters (e.g. rotation degree, noise level). Note that we only test these operators in ablation, the augmentation policy used to train our
nodels only includes random crop (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)



Composition of Augmentation

* Apply two series of augmentation cror IR | 50

(one after another) = -
-+ Significantly improves the quality of & “*".”".
representation %soba 46.2

 Random Cropping + Color Jitter
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Composition of Augmentation

* How Much Augmenation should we do?
* What will be the strength for color distortion?
* Very High!!l! (color Distortion =1)

Color distortion strength
Methods 1/8 1/4 1/2 1 1 (+Blur) || AutoAug

SimCLR 59.6 61.0 62.6 63.2 64.5 61.1
Supervised | 77.0 76.7 76.5 75.7 75.4 77.1




Model Size &
Projection Head
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Figure 7. Linear evaluation of models with varied depth and width.

Models in blue dots are ours trained for 100 epochs, models in red
stars are ours trained for 1000 epochs, and models in green crosses
are supervised ResNets trained for 90 epochs’ (He et al., 2016).

* Increasing the size 5 increases the accuracy significantly

* anonlinear projection is better than a linear projection
(+3%), and much better than no projection
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Figure 8. Linear evaluation of representations with different pro-
jection heads ¢g(-) and various dimensions of z = g(h). The
representation h (before projection) is 2048-dimensional here.



Batch Size & Epoch

e Larger Batch
* Longer Epoch
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Summary of SimCLR Framework!

* Projection head is important to get good representation
 Random crop, flip and color jitter are best
* Stronger augmentation

* Longer Epoch with Large batch size 2 Many GPUs



