

From Indicators to Insights: Diversity-Optimized for Medical Series-Text Decoding via LLMs

Presenter: [Shovito Barua Soumma](#)

Date: Jan 21, 2026

NeurIPS 2025

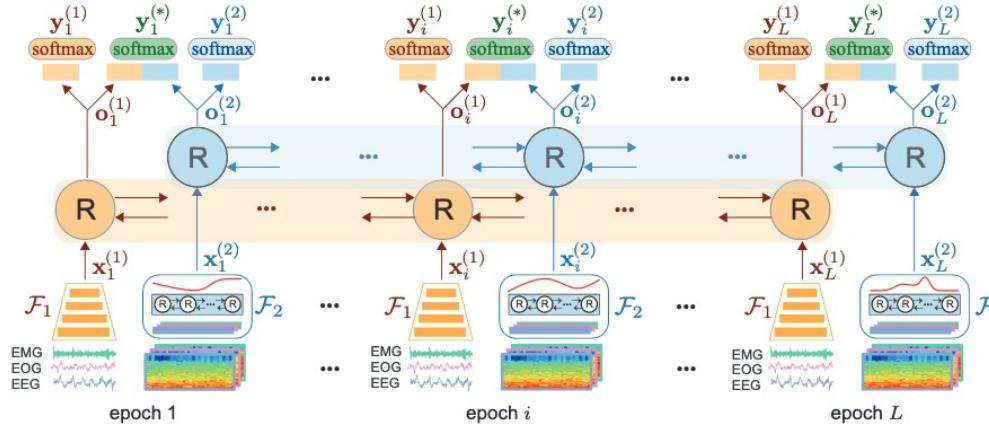
Introduction

- Decoding Medical Timeseries is hard

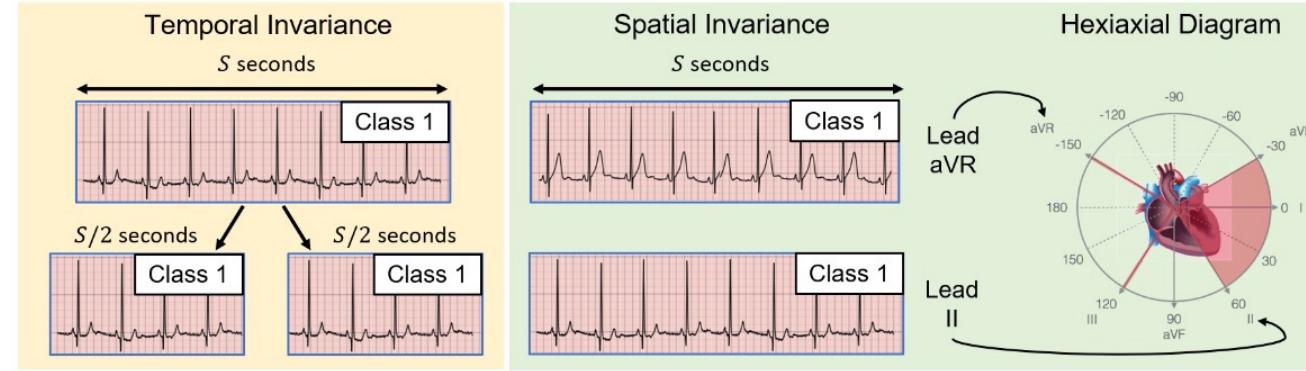
Regular Time Series	vs.	Medical Time Series
<ul style="list-style-type: none">Physically or mechanically generated (e.g., weather, traffic)Stable statistical patterns, often stationaryApproximate prediction acceptable	Nature of signals Data consistency Error tolerance	<ul style="list-style-type: none">Biophysiological and multi-source (e.g., EEG, ECG, EMG)High inter-subject variability, non-stationary dynamicsMisinterpretation may lead to clinical risk

Motivation

Early knowledge integration in medical modeling:

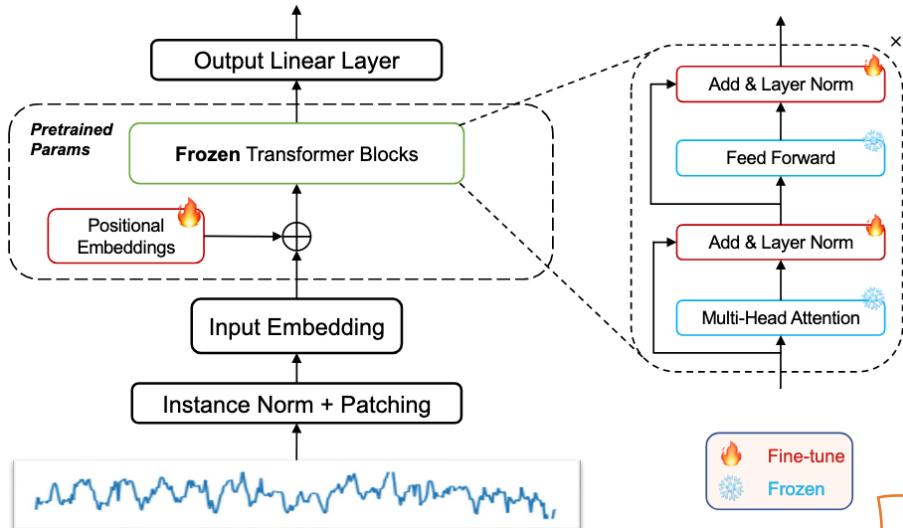


Task Specific Modular Design



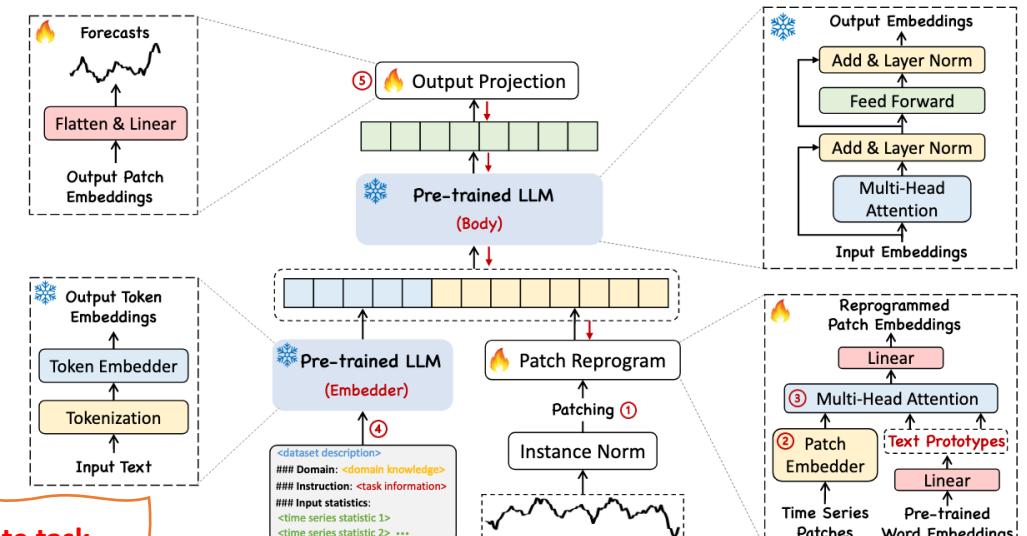
Task Agnostic Modular Design

LLMs have become *a new paradigm* due to their efficient ability to transform knowledge



Implicit Knowledge Modeling

do not incorporate task-relevant medical indicators



Explicit Knowledge Modeling

Motivation

Limited inspiration for decision-making

<dataset description>

Domain: <domain knowledge>

Instruction: <task information>

Input statistics:

<time series statistic 1>

<time series statistic 2> ...

(a) dataset descriptions and sample statistics

Timestamp	Other Descriptions
2016/7/1 00:00:00	Begin of day
.....
2016/7/1 23:00:00	Warm-up device
2016/7/2 00:00:00	P0 Warning
2016/7/2 01:00:00	Cooling device
.....
2016/7/2 15:00:00	<missing>

Default Prompt

This is the series
from 2016/7/2 00:00:00
to 2016/7/2 15:00:00
<EOS>

variable text length

Prompts

(Optional)

This is the series with
interval in 1 hour.
It has undergone: P0
Warning <EOS>

LLM

Embedding
of <EOS>

(b) timestamp information

GAP

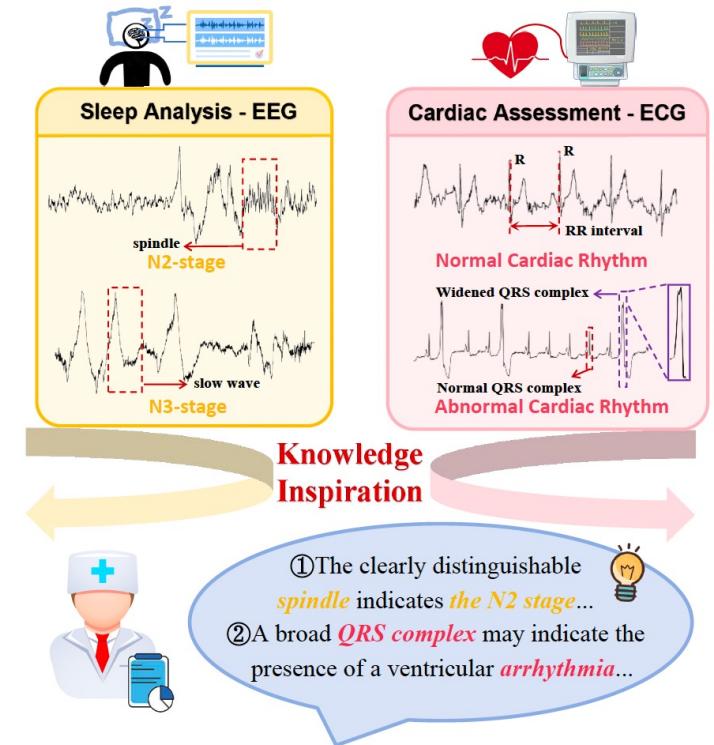


Figure 1: Task-relevant indicators provide critical cues for physiological state interpretation in sleep analysis and cardiac assessment.

- automatically detect medical indicators are not perfectly accurate,
- but easy to extract and extremely useful for medical decision-making.
- However, current LLM-based methods do not make use of this information at all.

Motivation

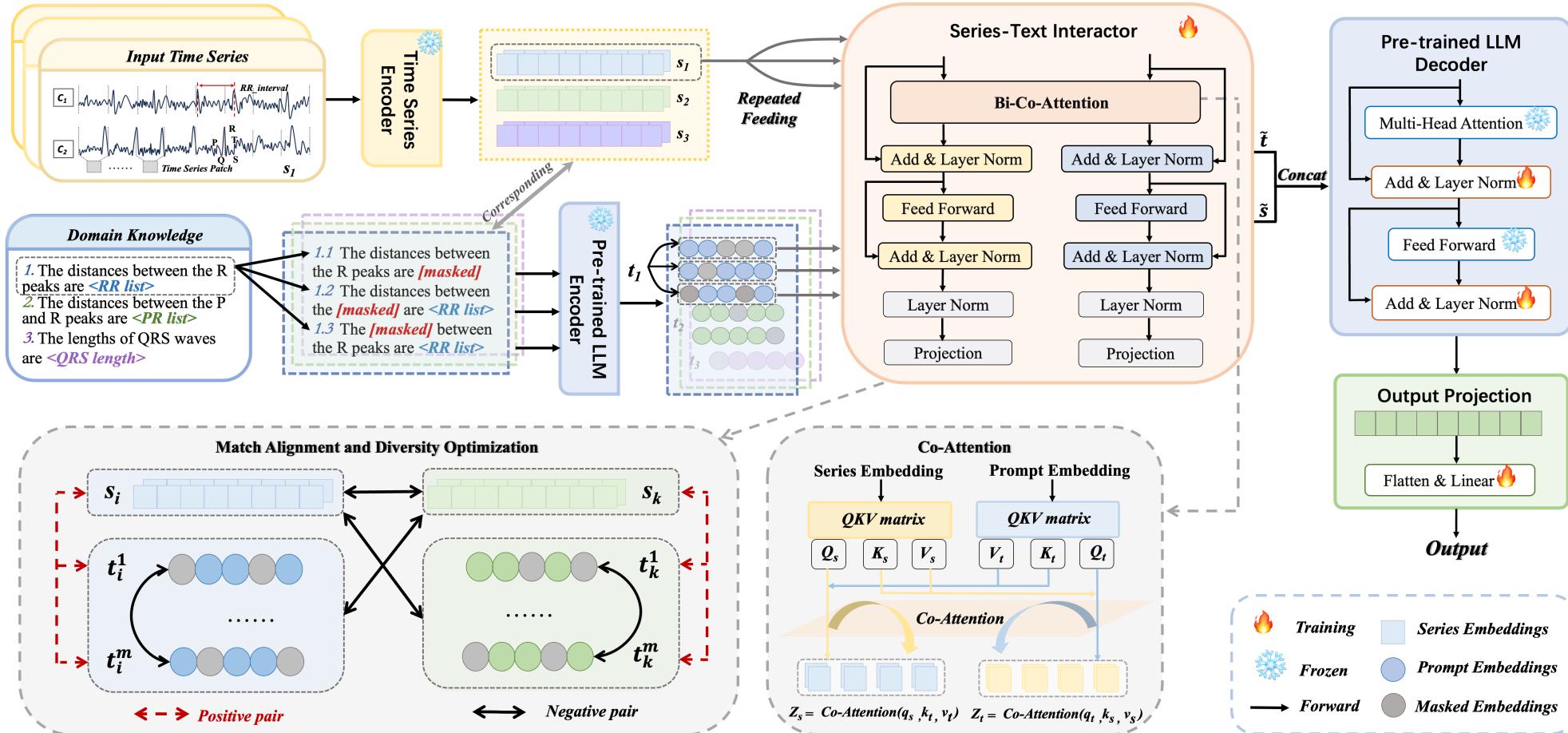
Challenges

- *What kinds of promptable knowledge are most effective for decoding medical time series?*
 - Existing prompts lack task-specific, discriminative cues that experts actually rely on.
 - The challenge is to identify what type of knowledge truly drives physiological interpretation.
- *How to robustly integrate time series and suboptimal text prompts?*
 - Text prompts may be incomplete or inaccurate.
 - A robust model must still align and learn meaningful cross-modal representations even when the

InDiGO – designed to integrate *indicator-guided prompts* and optimize their diversity and alignment through an evolutionary learning process.

Method

Method



Method

- *LLM predicts the target conditioned on both the series and a text prompt :*

$$P_{\text{LLM}}(Y) = \mathbb{E}_{(s,t) \sim P(s,t)} [P_{\text{LLM}}(Y|s,t)] \approx \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{t \sim P(t|s_i)} [P_{\text{LLM}}(Y|s_i, t)]$$

*In practice, we approximate the whole text distribution with a single suboptimal text → **this introduces bias***

$$\text{Bias}(\hat{\mathcal{M}}) = \mathbb{E}[P_{\text{LLM}}(y_i|s_i, t)P(t|s_i)] - \int P_{\text{LLM}}(y_i|s_i, t)P(t|s_i)dt$$

Based on the aforementioned indicator-guided prompts, we obtain an initial text sample t_i^0 corresponding to s_i , which serves as a coarse approximation of the optimal text t_i^* . However, even so, manually designed prompts inevitably introduce bias in the estimation of the marginal likelihood. To mitigate this limitation, we aim to construct and perform multiple importance samplings from a simple distribution $q(t|t_i^0)$ that is both **computationally tractable and closer to the optimal distribution** t_i^* , thereby replacing infeasible enumeration with sampling-driven surrogate approximation.

Method

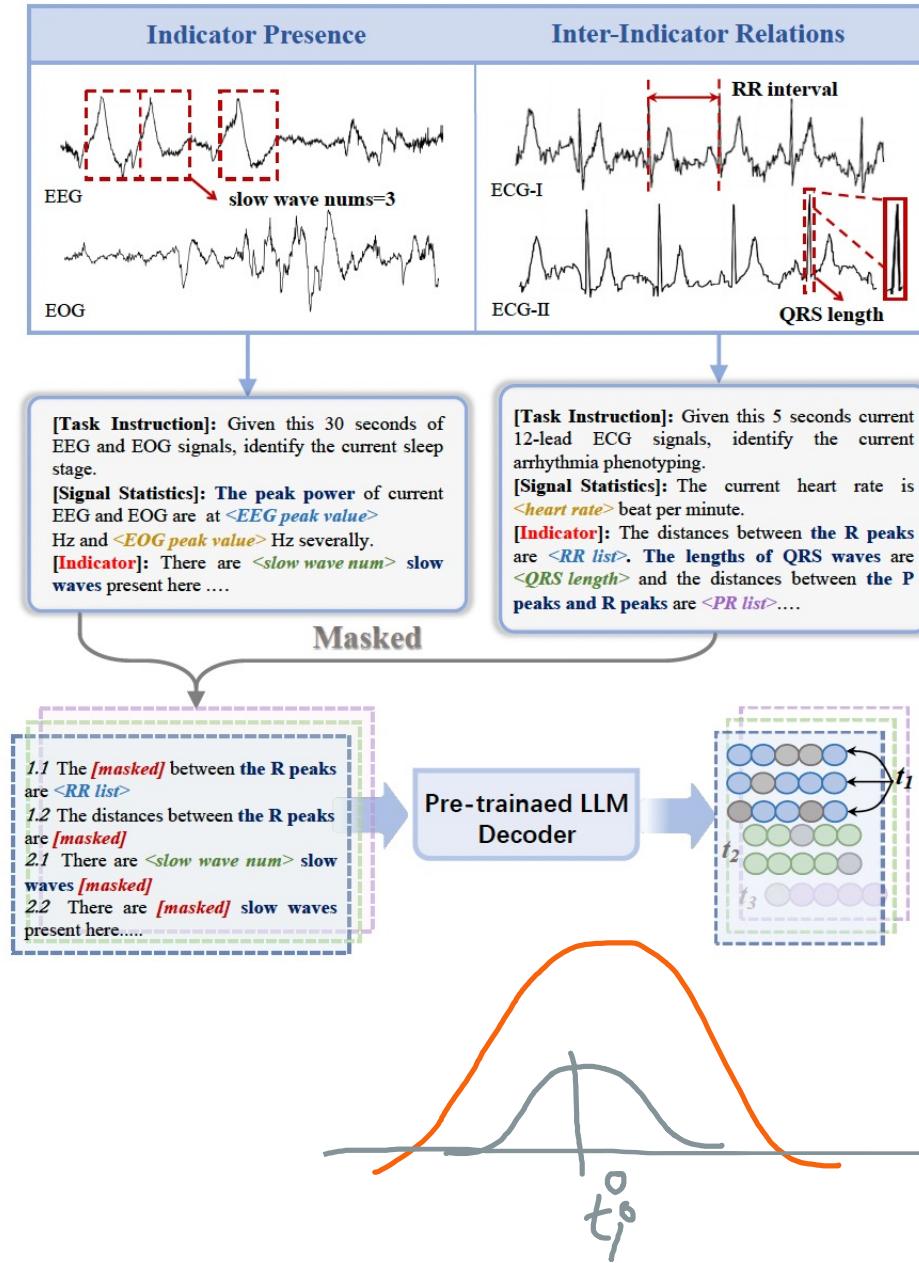
1. Signal tokenization (patching)

$$\mathbf{s}_i = \mathbf{SeriesEnc}(s_i^1, s_i^2, \dots, s_i^{L_s}, [\text{CLS}^s])$$

2. Indicator-Guided Prompt Construction

3. Masked Monte Carlo Importance Sampling

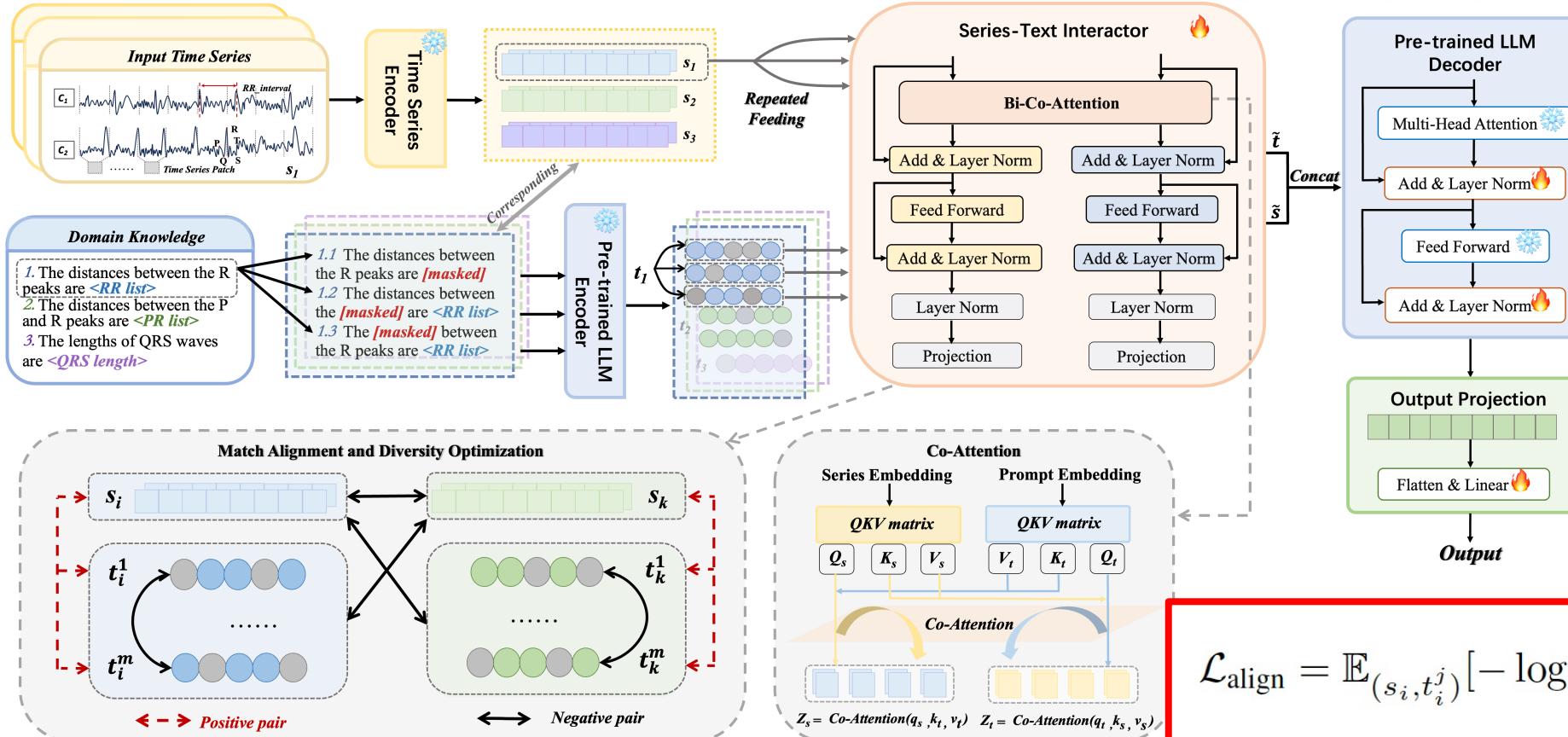
$$\mathcal{D}^{t_i} = \{t_i^j | t_i^{j,1}, t_i^{j,2}, \dots, t_i^{j,L_{t_i}}; j = 1, \dots, m\}$$



Method: Match Alignment + Diversity Optimization

- *Series-Text Interaction:*

$$(\mathbf{z}_s, \mathbf{z}_t) = \text{BiCoAttn}(\mathbf{s}, \mathbf{t}) = \left(\text{softmax} \left(\frac{\mathbf{q}_s \mathbf{k}_t^\top}{\sqrt{d}} \right) \mathbf{v}_t, \text{softmax} \left(\frac{\mathbf{q}_t \mathbf{k}_s^\top}{\sqrt{d}} \right) \mathbf{v}_s \right)$$



Results

- *General pre-trained models underperform due to their lack of physiological signal awareness, while task-specific models benefit from prior knowledge integration.*

Methods	Sleep-EDF-20			Sleep-EDF-78		
	Acc.	Macro F1	Kappa	Acc.	Macro F1	Kappa
TF-C [48]	55.42 ±1.39	26.04 ±0.21	30.74 ±1.52	53.90 ±4.03	26.00 ±2.09	29.32 ±6.43
SimMTM [7]	66.91 ±1.89	53.21 ±1.95	53.25 ±2.02	63.06 ±2.67	57.07 ±2.13	53.07 ±3.42
OneFitsAll [49]	72.60 ±1.51	61.61 ±5.80	61.81 ±3.50	68.50 ±2.19	54.24 ±1.96	55.21 ±3.07
Time-LLM [12]	80.31 ±2.63	71.64 ±3.02	70.22 ±2.84	78.08 ±2.96	66.09 ±3.25	68.04 ±3.14
KEDGN [24]	74.89 ±3.86	64.29 ±3.36	64.90 ±5.46	70.34 ±1.85	58.59 ±2.74	57.47 ±2.56
MiniRocket [5]	81.60 ±1.55	72.82 ±2.01	72.79 ±1.96	78.36 ±1.93	70.18 ±2.35	69.46 ±2.46
BIOT [45]	81.86 ±4.41	75.29 ±4.47	75.14 ±6.00	77.15 ±3.04	69.36 ±4.13	68.26 ±4.36
TinySleepNet [38]	83.64 ±2.31	77.54 ±2.55	77.63 ±2.29	83.49 ±2.24	76.64 ±2.61	76.41 ±2.59
XSleepNet [32]	80.93 ±2.34	76.71 ±2.59	74.31 ±2.32	81.83 ±2.30	75.28 ±2.66	75.44 ±2.37
L-SeqSleepNet [33]	82.90 ±2.12	74.90 ±2.22	76.47 ±2.24	80.84 ±2.18	72.67 ±2.38	74.94 ±2.51
SleepHGNN [10]	81.15 ±1.96	72.88 ±2.17	73.35 ±2.16	77.35 ±2.13	69.56 ±2.39	68.65 ±2.41
SleepKD [21]	82.44 ±2.40	74.11 ±2.72	76.87 ±2.63	80.19 ±2.85	72.65 ±2.84	74.86 ±2.93
SleepDG [42]	81.92 ±2.27	74.74 ±2.53	76.43 ±2.47	79.95 ±2.42	72.21 ±2.59	74.16 ±2.68
Brant-X [47]	84.58 ±1.98	77.63 ±2.13	79.29 ±2.18	82.84 ±2.21	77.04 ±2.30	76.67 ±2.49
InDiGO	89.04 ±1.80	80.53 ±1.77	84.91 ±2.51	86.79 ±1.90	81.12 ±1.88	81.60 ±2.89