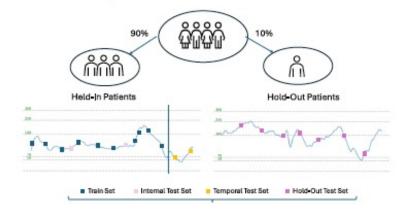
A large sensor foundation model pretrained on continuous glucose monitor data for diabetes management

Presenter: Shovito Barua Soumma

Date: Oct 22, 2025

- September 16, 2025
- npj Health Systems

Introduction


- Traditional AI models for glucose forecasting are task-specific, require patient-level tuning, and often fail to generalize.
- Introduces CGM-LSM, a Large Sensor Model inspired by large language models (LLMs) like GPT-2
 - captures universal glucose patterns across diabetes types, ages, and genders
 - Performs better in zero shot settings compared to SOTA in longer horizons

Method

- 5.9 M CGM readings from 592 diabetic patients (T1D & T2D) collected at 5-min intervals.
- Instance Construction:

 Each sample = 24 h
 input (288 points) →
 predict next 2 h (24 points); overlapping sliding windows used for data expansion.

A. Model Development and Evaluation Dataset Construction

C. Pretraining Process

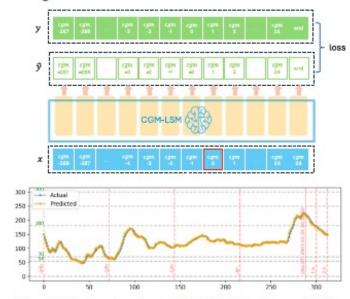
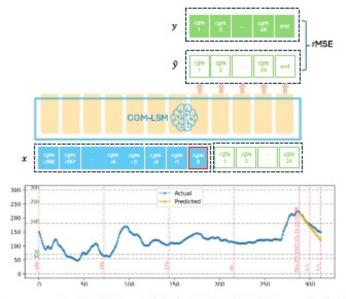



Fig. 1 | The workflow of dataset construction and CGM-LSM development. A The instances selection process to construct internal test set, temporal test set, held-out test set, and training set. B For one instance, the input-output pair construction process. Each instance is a combination of a patient and an instance datetime. The

B. Instance Construction with Before 24H CGM and After 2H CGM

D. Prediction/Generation Process

instance contains 288 CGM records before 24 h and 24 CGM records after 2 h. C To pretraining process for one instance given 26-h CGM records. D The prediction (generation) process for one instance with 24-h CGM records.

Method

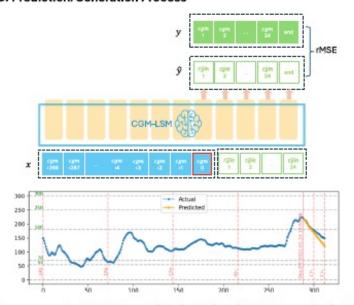
Known patients, known time period Known patients, future time periods Unknown patients

C. Pretraining Process Checks in-sample accuracy Internal Same patients Random samples Temporal Same patients Future time periods Tests prediction stability over time Held-out New patients Entirely new people Tests model generalization to unseen patients Predicted 250 200

Fig. 1 | The workflow of dataset construction and CGM-ISM development. A The instances selection process to construct internal test set, temporal test set, held-out test set, and training set. B For one instance, the input-output pair construction process. Each instance is a combination of a patient and an instance datetime. The

A. Model Development and Evaluation Dataset Construction

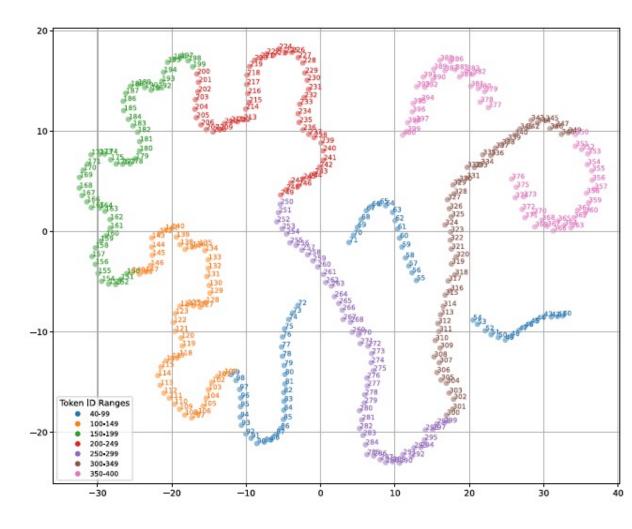
Held-In Patients


Hold-Out Patients

Hold-Out Test Set

B. Instance Construction with Before 24H CGM and After 2H CGM

D. Prediction/Generation Process


instance contains 288 CGM records before 24 h and 24 CGM records after 2 h. C To pretraining process for one instance given 26-h CGM records. D The prediction (generation) process for one instance with 24-h CGM records.

Method

- Decoder based transformer (autoregressive)
- Discrete/categorical tokenization

Token ID	Glucose bin (mg/dL)
14	110–115
15	115–120
16	120–125
17	125–130

$$L(heta) = \sum_i \log p_ heta(s_i|s_1\dots s_{i-1})$$

Results

Table 1 | Data description for the Welldoc dataset, showing the number of instances and patient counts across subsets by diabete stype (Type 1 Diabetes [T1D] and Type 2 Diabetes [T2D]), age groups, and gender

	Records (Patients)	Type 1 Diabetes (T1D)				Type 2 Diabetes (T2D)							
		Complete dataset	Dataset	Training	Internal	Temporal	Held-Out	Complete dataset	Dataset	Training	Internal	Temporal	Held-out
Patients	15,961,183 (592)	7,788,836 (291)	779,111 (290)	560,184 (257)	61,979 (256)	68,762 (257)	88, 186 (33)	8,172,347 (301)	817,125 (301)	597,975 274)	66,257 (273)	73,293 (273)	79,600 (27)
Age group													
18-39 years old	3,425,955 (129)	2,901,601 (109)	290,615 (108)	209,054 (94)	23,321 (94)	25,837 (94)	32,403 (14)	524,354 (20)	52,077 (20)	39,252 (19)	4,440 (19)	4908 (19)	3,477 (1)
40-64 years old	8,040,123 (299)	3,249,786 (123)	324,649 (123)	231,576 (108)	25,408 (107)	28,412 (108)	39,253 (15)	4,790,337 (176)	478,441 (176)	347,663 (158)	38,481 (158)	42,483 (158)	49,814 (18)
65+ years old	4,495,105 (164)	1,637,449 (59)	163,847 (59)	119,554 (55)	13,250 (55)	14,513 (55)	16,530 (4)	2,857,656 (105)	286,607 (105)	211060 (97)	23,336 (96)	25902 (96)	26,309 (8)
Gender group													
Female	7,133,594 (283)	4,150,047 (165)	415,869 (164)	295,753 (144)	32,910 (144)	36,478 (144)	50,728 (20)	2,983,547 (118)	297,557 (118)	224,985 (109)	24,768 (108)	27,582 (108)	20,222 (9)
Male	8,827,589 (309)	3,638,789 (126)	363,242 (126)	264,431 (113)	29,069 (112)	32,284 (113)	37,458 (13)	5,188,800 (183)	519,568 (183)	372,990 (165)	41,489 (165)	45,711 (165)	59,378 (18)

A. Type 1 Diabetes rMSE by Hour-of-Day at Prediction Time

A. Model performance across age groups. Type 1 Diabetes - by Age Group Type 2 Diabetes - by Age Group Evaluation Set Evaluation Set 1, internal test 1, internal test 2. temporal test 2. temporal test 3, held-out test 3 held out test A: 18-39 B: 40-64 C: 65+ A: 18-39 B: 40-64 B. Model performance across gender groups. Type 1 Diabetes - by Gender Type 2 Diabetes - by Gender **Evaluation Set** Evaluation Set 1, internal test 1, internal test or (rMSE) 2. temporal test 2. temporal test 3. held-out test 3. held-out test

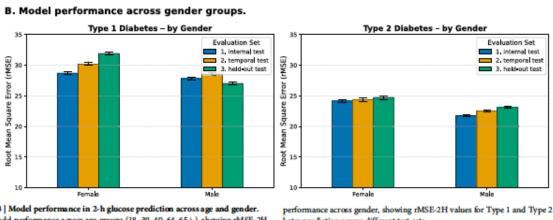
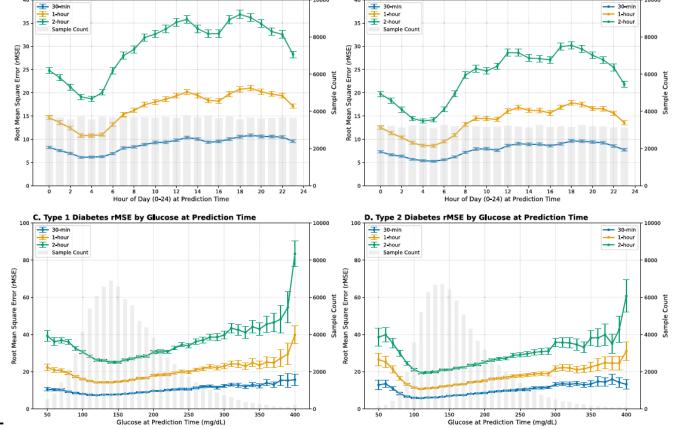



Fig. 3 | Model performance in 2-h glucose prediction across age and gender. A Model performance across age groups (18-39, 40-64, 65+), showing rMSE-2H betes prediction across different test sets. values for Type 1 and Type 2 Diabetes prediction across different test sets. B Model

B. Type 2 Diabetes rMSE by Hour-of-Day at Prediction Time

Results: Zero Shot settings (Benchmarking)

Table 2 | Comparative performance of predictive models for future glucose levels, using Root Mean Square Errors (rMSE)

Model	Dataset		rMSE-30m	rMSE-1h	rMSE-2h
LSTM	OhioT1DM		36.022 (0.551)	37.17 (0.513)	38.703 (0.461)
RNN	_		36.102 (0.552)	37.344 (0.512)	38.952 (0.458)
GRU			37.555 (0.554)	38.573 (0.517)	40.108 (0.463)
Transformer	_		27.886 (0.463)	30.869 (0.462)	36.653 (0.47)
Informer			35.197 (0.501)	36.962 (0.485)	40.204 (0.463)
Autoformer	_		36.08 (0.552)	38.352 (0.542)	41.395 (0.515)
CGMLSM			9.024 (0.168)	15.895 (0.283)	26.876 (0.43)
CGM-LSM	WellDoc T1D	Internal Test	8.403 (0.066)	16.049 (0.118)	28.277 (0.188)
		Temporal Test	9.155 (0.068)	17.013 (0.118)	29.426 (0.184)
		Held-Out Test	8.926 (0.056)	16.905 (0.101)	29.812 (0.16)
	WellDoc T2D	Internal Test	7.441 (0.055)	13.418 (0.094)	22.649 (0.147)
		Temporal Test	8.025 (0.058)	14.073 (0.095)	23.216 (0.143)
		Held-Out Test	7.772 (0.055)	13.877 (0.091)	23.494 (0.143)

Each entry displays the mean rMSE followed by the confidence interval width in parentheses, indicating the range within which the true mean is expected to lie with 95% confidence.

Limitation

- Need to study scaling laws (how data/model size affects performance)
 - Fix data (pf vs complexity)
 - Fix parameter (pf vs data)
- No inclusion of context (meals, insulin, exercise) (rare + discrete)