

Contrastive Representation Learning for Electroencephalogram Classification

Machine Learning for Health, 2020

Citation: 140

Presenter: Nooshin Taheri

5/21/2024

Why self-supervised learning:

- Advanced machine learning techniques need large, labeled EEG datasets because EEG is complex and is usually contaminated with significant artifacts.
- EEG data collection and labeling are expensive.
- Combining datasets is infeasible due to inconsistent experimental paradigms.
- Publicly available labeled EEG data is limited and existing datasets are small and incompatible.
- Self-supervised learning (SSL) enables learning from varied EEG setups and trials.
- SSL is useful with limited labeled data and costly manual labeling.
- Unlike traditional supervised models that begin with random initial parameters—weights, kernels, and biases—which require extensive labeled data to optimize effectively, SSL utilizes unlabeled data to pre-train these parameters.
- This pre-training enhances model accuracy by providing a more accurate starting point for parameter tuning and accelerates the learning process by reducing reliance on labeled data.

OVERVIEW OF SELF-SUPERVISED LEARNING

- There are two steps in self-supervised learning: Pretext Task and Downstream Task.
- The 'pretext task':
 - Creates a good model starting point using both labeled and unlabeled data.
 - This task helps develop initial model parameters and useful data features.
 - These features capture general data characteristics, not specific details.
 - For EEG data, features might capture overall brain activity patterns, not specific conditions like seizures.
- The 'downstream task':
 - Refines the model with labeled data.
 - The last layer adjusts to work well with existing layers.
 - Fine-tune the entire model by adjusting all layers.
- Unlike traditional supervised learning, SSL uses initial parameters from the pretext task, not random.
- This inherited setup improves performance, especially with scarce labeled data, by leveraging the broad understanding from the pretext task.

CONTRASTIVE PRETEXT TECHNIQUES:

- Contrastive pretext techniques identify differences between augmentations of input data, labeled or not.
- Augmented inputs are paired with the original data to form contrastive pairs.
- Pairs can include one original and one augmented input or two different augmentations of the same input.
- These pairs train the model using a contrastive loss function.
- The objective is to maximize the agreement between positive pairs (instances from the same sample) and minimize the agreement between negative pairs (instances from different samples)

About this paper

- Present a framework for learning EEG signal representations via contrastive learning.
- Modify the SimCLR framework for time-series data to learn EEG representations.
- Extract features from a single channel at a time, allowing recombination of multi-channel recordings and fusion of datasets.
- Apply the pre-trained encoder on three classification tasks:
 - Emotion Recognition (ER) on the SEED dataset.
 - Normal/Abnormal Classification (NAC) on the TUH dataset.
 - Sleep-stage scoring (SSS) on the SleepEDF dataset.

Channel recombination and preprocessing

- To learn the representation of a single-channel
 - Combine different datasets to obtain a larger one:
 - (1) TUH Normal/Abnormal EEG, (2) SEED dataset,

(3) Sleep EDF, (4) Texas State University Resting State dataset, and (5) ISRUC-Sleep dataset

• Recombine channels in a multi-channel recording to obtain more valid channels.

- Preprocessing :
 - Resampled all datasets to 200Hz.
 - Applied a fifth-order band-pass Butterworth filter (0.3-80 Hz).
 - Removed high-voltage channels (higher than 500 μ Vs) as artifacts.
 - Train the encoder with 20-second channel chunks.

Channel augmentations:

- A key ingredient of contrastive learning is a set of augmentations (or transformations) that do not alter the semantic information of data.
- A contrastive learning algorithm learns representations that are maximally similar for augmented instances of the same data point and minimally similar for different data points.
- The objective is to learn features that reflect the high-level content of EEG signals.
- Consulted neurologists on EEG data augmentations.

 Table 1: Transformation Ranges

Transformation	\min	max
amplitude scale	0.5	2
time shift (samples)	-50	50
DC shift (μV)	-10	10
zero-masking (samples)	0	150
additive Gaussian noise (σ)	0	0.2
band-stop filter (5 Hz width) (Hz)	2.8	82.5

Learning algorithm

- SeqCLR (Sequential Contrastive Learning of Representations) \rightarrow Similar to SimCLR
- learns features by maximizing the similarity between differently augmented transformations of the same channel through a contrastive loss.
- This model consists of four modules:
 - Channel Augmenter
 - Channel encoder
 - Projector
 - Contrastive loss

Channel Augmenter

- Randomly transforms a mini-batch of N channels into 2N augmented channels.
- Randomly applies two augmentations to each channel, resulting in a positive pair.

Channel encoder:

- Transforms an input channel into four feature channels, maintaining the same length for each.
- This feature allows encoding of sequences of varying lengths suitable for different downstream tasks.

• Encoder Architectures

• Recurrent Encoder:

- multi-scale input approach
- employing downsampling and upsampling to allow GRU units to capture features at various time scales.
- includes two recurrent residual units.
- Convolutional Encoder:
 - Employs reflection padding to match the kernel size of the convolution layers, ensuring the output length matches the input length.
 - includes four convolutional residual units.

A. Recurrent Encoder

B. Convolutional Encoder

Projector:

- Transform the output of the encoder into a 32-dimensional point
- Uses downsampling and bidirectional LSTM units
- The final outputs of each direction are concatenated and fed into dense layers with a ReLU activation in between.

Contrastive loss:

 Assuming that z_i and z_j are the outputs of the projector for the positive pair of x_i and x_j, the NT-Xent loss term for the positive pair is defined as:

$$\ell_{i,j} = -\log \frac{\exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k \neq i}^{2N} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

• where sim(*u*; *v*) is the cosine similarity of *u* and *v* and *τ* is the temperature parameter

Classifier:

- For downstream classification tasks, the projector is discarded, and a classifier almost identical to the projector with two differences is used:
 - (1) the output dimension of the last dense layer is set to the number of classes
 - (2) a LogSoftmax layer is added afterward.
- The input is the concatenation of the output of the encoder for all input channels of a multi-channel recording.

Results on emotion recognition:

- Conducted experiments on SEED dataset
- EEG data of 15 subjects recorded in 62 channels.
- The data was recorded when participants watched emotional videos chosen from movies in three categories of emotions, namely *negative*, *neutral*, and *positive*.
- Pass each channel through the encoder and concatenate the 4-dimensional output sequence.
- The input of the classifier is a 4 * 62-dimensional sequence of length 200.
- Table 2 shows the results of the experiments. The rows marked with SeqCLR-C (convolutional) and SeqCLR-R (recurrent) show the results without fine-tuning where the encoder parameters were frozen during training.
- The proposed method improves other self-supervised algorithms by a large gap. Moreover, when fine-tuned on the entire dataset, SeqCLR achieves 85.77% accuracy, slightly higher than the current state-of-the-art supervised model (BiHDM).

Table 2:	Emotion	recognition	on	SEED
----------	---------	-------------	----	------

Model	Accuracy			
Percentage of labels	1%	10%	50%	100%
RGNN	-	-	-	85.30
BiHDM	-	-	-	85.40
CPC	69.17	76.33	79.98	81.12
RP	67.76	74.29	77.95	80.39
TS	69.73	78.27	81.66	82.10
SeqCLR - C	77.09	81.01	83.73	84.11
SeqCLR - R	76.52	79.04	81.45	83.78
fine-tuned SeqCLR - C	$\boldsymbol{79.04}$	83.12	85.21	85.77
fine-tuned SeqCLR - R	78.18	82.93	84.00	85.25

Ablation study of channel recombination and dataset fusion

- we used channel recombination (CR) and dataset fusion (DF) to obtain a larger training set for self-supervised learning.
- The table shows the effect of removing each of these steps on the accuracy of the classifiers without fine-tuning.
- In particular removing channel recombination had a stronger effect in all three tasks.

Channel recombination	Dataset fusion	SEED	TUH	SleepEDF
×	×	78.93	79.12	77.72
\checkmark	×	83.01	83.78	81.10
×	\checkmark	80.23	83.44	79.59
1	\checkmark	84.11	86.27	83.05

Table 5: Ablation study of CR and DF

Choosing effective augmentations:

- Set up a classification task with the convolutional SeqCLR architecture,
 - only using a single augmentation at a time.
 - trained nine encoders and tested them on the three classification tasks.
 - froze the encoder parameters, for training the classifiers
- We observed that the six augmentations, namely (1) zero-masking, (2) amplitude scaling, (3) time-shift, (4) Gaussian noise, (5) DC-shift, and (6) band-stop filter perform significantly better in extracting useful features for the downstream tasks.

Ablation study of augmentations:

- masking and scaling are the most effective augmentations across the three classification tasks.
- Additive noise and DC shift have the least effect on the performance of the classifiers

Figure 5: Ablation study of augmentations. Each bar shows the accuracy of the classifier when that augmentation is removed.

Conclusion

- Presented a self-supervised framework, SeqCLR, for learning EEG signal representations.
- Adapted the SimCLR framework to time-series data to boost sample-efficiency and classification accuracy across three specific tasks:
 - Emotion recognition on the SEED dataset
 - Normal/abnormal classification on the TUH dataset
 - Sleep-stage scoring on the SleepEDF dataset
- Achieved improved performance over other baseline self-supervised models and, with fine-tuning, surpassed current state-of-the-art supervised models in emotion recognition and sleep staging.
- Implemented six augmentations, identifying masking and scaling as particularly critical for feature extraction in downstream tasks.
- Demonstrated that self-supervised and contrastive learning is effective for deriving valuable representations from EEG data.