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Why self-supervised learning:

* Advanced machine learning techniques need large, labeled EEG datasets because EEG is complex and is
usually contaminated with significant artifacts.

* EEG data collection and labeling are expensive.

* Combining datasets is infeasible due to inconsistent experimental paradigms.

* Publicly available labeled EEG data is limited and existing datasets are small and incompatible.
» Self-supervised learning (SSL) enables learning from varied EEG setups and trials.

e SSL is useful with limited labeled data and costly manual labeling.

* Unlike traditional supervised models that begin with random initial parameters—weights, kernels, and
biases—which require extensive labeled data to optimize effectively, SSL utilizes unlabeled data to pre-
train these parameters.

* This pre-training enhances model accuracy by providing a more accurate starting point for parameter
tuning and accelerates the learning process by reducing reliance on labeled data.



OVERVIEW OF SELF-SUPERVISED LEARNING

* There are two steps in self-supervised learning: Pretext Task and Downstream Task.

* The ‘pretext task’:
* Creates a good model starting point using both labeled and unlabeled data.

* This task helps develop initial model parameters and useful data features.

* These features capture general data characteristics, not specific details.
* For EEG data, features might capture overall brain activity patterns, not specific conditions like seizures.

e The ‘downstream task’:
* Refines the model with labeled data.
e The last layer adjusts to work well with existing layers.

* Fine-tune the entire model by adjusting all layers.

* Unlike traditional supervised learning, SSL uses initial parameters from the pretext task, not

random.
* This inherited setup improves performance, especially with scarce labeled data, by leveraging

the broad understanding from the pretext task.



CONTRASTIVE PRETEXT TECHNIQUES:

Contrastive pretext techniques identify differences between augmentations of input data, labeled or
not.

 Augmented inputs are paired with the original data to form contrastive pairs.

* Pairs caninclude one original and one augmented input or two different augmentations of the same
input.

* These pairs train the model using a contrastive loss function.

* The objective is to maximize the agreement between positive pairs (instances from the same sample)
and minimize the agreement between negative pairs (instances from different samples)



About this paper

* Present a framework for learning EEG signal representations via contrastive learning.
* Modify the SimCLR framework for time-series data to learn EEG representations.

* Extract features from a single channel at a time, allowing recombination of multi-channel
recordings and fusion of datasets.

* Apply the pre-trained encoder on three classification tasks:

* Emotion Recognition (ER) on the SEED dataset.
* Normal/Abnormal Classification (NAC) on the TUH dataset.
» Sleep-stage scoring (SSS) on the SleepEDF dataset.



Channel recombination and preprocessing

* To learn the representation of a single-channel
 Combine different datasets to obtain a larger one:
(1) TUH Normal/Abnormal EEG, (2) SEED dataset,
(3) Sleep EDF, (4) Texas State University Resting State dataset, and (5) ISRUC-Sleep dataset

* Recombine channels in a multi-channel recording to obtain more valid channels.
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* Preprocessing :
 Resampled all datasets to 200Hz.
* Applied a fifth-order band-pass Butterworth filter (0.3-80 Hz).
* Removed high-voltage channels (higher than 500 uVs) as artifacts.
* Train the encoder with 20-second channel chunks.



Channel augmentations:

* A key ingredient of contrastive learning is a set of augmentations (or transformations) that do not alter
the semantic information of data.

* A contrastive learning algorithm learns representations that are maximally similar for augmented
instances of the same data point and minimally similar for different data points.

* The objective is to learn features that reflect the high-level content of EEG signals.

* Consulted neurologists on EEG data augmentations.
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Learning algorithm

* SeqCLR (Sequential Contrastive Learning of Representations) = Similar to SImCLR

* learns features by maximizing the similarity between differently augmented transformations of
the same channel through a contrastive loss.

* This model consists of four modules:
* Channel Augmenter
* Channel encoder
* Projector
* Contrastive loss

* Channel Augmenter
* Randomly transforms a mini-batch of N channels into 2N augmented channels.
 Randomly applies two augmentations to each channel, resulting in a positive pair.

Channel Encoder

Maximize
Agreement
Channel Encoder Projector

Sequential representation for downstream tasks




Channel encoder:

* Transforms an input channel into four
feature channels, maintaining the same
length for each.

* This feature allows encoding of sequences of
varying lengths suitable for different
downstream tasks.

* Encoder Architectures
* Recurrent Encoder:
* multi-scale input approach
* employing downsampling and upsampling to

allow GRU units to capture features at
various time scales.

includes two recurrent residual units.

* Convolutional Encoder:
* Employs reflection padding to match the

kernel size of the convolution layers,

ensuring the output length matches the
input length.

includes four convolutional residual units.
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Projector:

* Transform the output of the encoder into a 32-dimensional point

e Uses downsampling and bidirectional LSTM units

* The final outputs of each direction are concatenated and fed into dense layers
with a RelLU activation in between.

C. Projector
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Contrastive loss:

* Assuming that z; and z; are the outputs of the projector for the positive pair of x; and x;, the NT-
Xent loss term for the positive pair is defined as:

exp(sim(z;, z;)/7)

> hi exp(sim(z;, z1)/7)

gi’j = — log

* where sim(u; v) is the cosine similarity of u and v and tis the temperature parameter



Classifier:

* For downstream classification tasks, the projector is discarded, and a classifier almost
identical to the projector with two differences is used:

* (1) the output dimension of the last dense layer is set to the number of classes
* (2) a LogSoftmax layer is added afterward.

* The input is the concatenation of the output of the encoder for all input channels of a
multi-channel recording.

Multi-channel EEG Data
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Results on emotion recognition:

e Conducted experiments on SEED dataset
* EEG data of 15 subjects recorded in 62 channels.

* The data was recorded when participants watched Table 2: Emotion recognition on SEED
emotional videos chosen from movies in three
categories of emotions, namely negative, neutral, and Model Accuracy
ositive.
P Percentage of labels | 1% 10%  50%  100%

* Pass each channel through the encoder and

ot ; RGNN - - - 8530
concatenate the 4-dimensional output sequence. BIHDM ] ] g0
* The input of the classifier is a 4 * 62-dimensional cpC 69.17 7633 7908 8112
sequence of length 200. RP 67.76 7429 77.95 80.39
* Table 2 shows the results of the experiments. The rows TS 09.73 7827 81.66 8210
marked with SeqCLR-C (convolutional) and SeqCLR-R SeqCLR - C 7709 81.01 83.73 84.11
(recurrent) show the results without fine-tuning where SeqCLR - R 76.52  79.04 8145 8378
the encoder parameters were frozen during training. fine-tuned SeqCLR - C | 79.04 83.12 85.21 85.77
 The proposed method improves other self-supervised fine-tuned SeqCLR - R | 7818 8293 84.00 85.25

algorithms by a large gap. Moreover, when fine-tuned
on the entire dataset, SeqCLR achieves 85.77%
accuracy, slightly higher than the current state-of-the-
art supervised model (BiHDM).



Ablation study of channel recombination and dataset fusion

e we used channel recombination (CR) and dataset fusion (DF) to obtain a larger training set for
self-supervised learning.

* The table shows the effect of removing each of these steps on the accuracy of the classifiers
without fine-tuning.

* In particular removing channel recombination had a stronger effect in all three tasks.

Table 5: Ablation study of CR and DF

Channel Dataset
recombination  fusion

SEED TUH SleepEDF

7893 79.12 77.72
83.01 83.78 81.10
80.23 83.44 79.59
84.11 86.27 83.05

N Xx \ X%
NN X X%




Choosing effective augmentations:

* Set up a classification task with the convolutional SeqCLR architecture,
* only using a single augmentation at a time.
* trained nine encoders and tested them on the three classification tasks.
* froze the encoder parameters, for training the classifiers

* We observed that the six augmentations, namely (1) zero-masking, (2) amplitude scaling, (3)

time-shift, (4) Gaussian noise, (5) DC-shift, and (6) band-stop filter perform significantly better in
extracting useful features for the downstream tasks.
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Ablation study of augmentations:

* masking and scaling are the most effective augmentations across the three classification tasks.

* Additive noise and DC shift have the least effect on the performance of the classifiers
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Figure 5: Ablation study of augmentations.
Each bar shows the accuracy of the
classifier when that augmentation
is removed.



Conclusion

* Presented a self-supervised framework, SeqCLR, for learning EEG signal representations.

* Adapted the SimCLR framework to time-series data to boost sample-efficiency and classification accuracy
across three specific tasks:

* Emotion recognition on the SEED dataset
* Normal/abnormal classification on the TUH dataset
* Sleep-stage scoring on the SleepEDF dataset

* Achieved improved performance over other baseline self-supervised models and, with fine-tuning,
surpassed current state-of-the-art supervised models in emotion recognition and sleep staging.

* Implemented six augmentations, identifying masking and scaling as particularly critical for feature extraction
in downstream tasks.

 Demonstrated that self-supervised and contrastive learning is effective for deriving valuable representations
from EEG data.



