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Why self-supervised learning:

• Advanced machine learning techniques need large, labeled EEG datasets because EEG is complex and is 
usually contaminated with significant artifacts.

• EEG data collection and labeling are expensive.
• Combining datasets is infeasible due to inconsistent experimental paradigms.

• Publicly available labeled EEG data is limited and existing datasets are small and incompatible.
• Self-supervised learning (SSL) enables learning from varied EEG setups and trials.

• SSL is useful with limited labeled data and costly manual labeling.

• Unlike traditional supervised models that begin with random initial parameters—weights, kernels, and 
biases—which require extensive labeled data to optimize effectively, SSL utilizes unlabeled data to pre-
train these parameters.

• This pre-training enhances model accuracy by providing a more accurate starting point for parameter 
tuning and accelerates the learning process by reducing reliance on labeled data.



OVERVIEW OF SELF-SUPERVISED LEARNING

• There are two steps in self-supervised learning: Pretext Task and Downstream Task.

• The ‘pretext task’:
• Creates a good model starting point using both labeled and unlabeled data.
• This task helps develop initial model parameters and useful data features.
• These features capture general data characteristics, not specific details.
• For EEG data, features might capture overall brain activity patterns, not specific conditions like seizures.

• The ‘downstream task’:
• Refines the model with labeled data.
• The last layer adjusts to work well with existing layers.
• Fine-tune the entire model by adjusting all layers.

• Unlike traditional supervised learning, SSL uses initial parameters from the pretext task, not 
random.

• This inherited setup improves performance, especially with scarce labeled data, by leveraging 
the broad understanding from the pretext task.



• Contrastive pretext techniques identify differences between augmentations of input data, labeled or 
not.

• Augmented inputs are paired with the original data to form contrastive pairs.

• Pairs can include one original and one augmented input or two different augmentations of the same 
input.

• These pairs train the model using a contrastive loss function.

• The objective is to maximize the agreement between positive pairs (instances from the same sample) 
and minimize the agreement between negative pairs (instances from different samples)

CONTRASTIVE PRETEXT TECHNIQUES:  



About this paper

• Present a framework for learning EEG signal representations via contrastive learning.

• Modify the SimCLR framework for time-series data to learn EEG representations.

• Extract features from a single channel at a time, allowing recombination of multi-channel 
recordings and fusion of datasets.

• Apply the pre-trained encoder on three classification tasks:

• Emotion Recognition (ER) on the SEED dataset.
• Normal/Abnormal Classification (NAC) on the TUH dataset.
• Sleep-stage scoring (SSS) on the SleepEDF dataset.



Channel recombination and preprocessing 

• To learn the representation of a single-channel
• Combine different datasets to obtain a larger one:

(1) TUH Normal/Abnormal EEG, (2) SEED dataset,
(3) Sleep EDF, (4) Texas State University Resting State dataset, and (5) ISRUC-Sleep dataset  

• Recombine channels in a multi-channel recording to obtain more valid channels. 

• Preprocessing :
• Resampled all datasets to 200Hz.
• Applied a fifth-order band-pass Butterworth filter (0.3-80 Hz). 
• Removed high-voltage channels (higher than 500 µVs) as artifacts.
• Train the encoder with 20-second channel chunks.



Channel augmentations: 

• A key ingredient of contrastive learning is a set of augmentations (or transformations) that do not alter 
the semantic information of data.

• A contrastive learning algorithm learns representations that are maximally similar for augmented 
instances of the same data point and minimally similar for different data points. 

• The objective is to learn features that reflect the high-level content of EEG signals.
• Consulted neurologists on EEG data augmentations.



Learning algorithm

• SeqCLR (Sequential Contrastive Learning of Representations) à Similar to SimCLR
• learns features by maximizing the similarity between differently augmented transformations of 

the same channel through a contrastive loss.
• This model consists of four modules:

• Channel Augmenter
• Channel encoder
• Projector
• Contrastive loss

• Channel Augmenter
• Randomly transforms a mini-batch of N channels into 2N augmented channels.
• Randomly applies two augmentations to each channel, resulting in a positive pair.



Channel encoder:

• Transforms an input channel into four 
feature channels, maintaining the same 
length for each.

• This feature allows encoding of sequences of 
varying lengths suitable for different 
downstream tasks. 

• Encoder Architectures
• Recurrent Encoder:

• multi-scale input approach
• employing downsampling and upsampling to 

allow GRU units to capture features at 
various time scales.

• includes two recurrent residual units.

• Convolutional Encoder:
• Employs reflection padding to match the 

kernel size of the convolution layers, 
ensuring the output length matches the 
input length. 

• includes four convolutional residual units.



Projector:

• Transform the output of the encoder into a 32-dimensional point
• Uses downsampling and bidirectional LSTM units
• The final outputs of each direction are concatenated and fed into dense layers 

with a ReLU activation in between.



Contrastive loss:

• Assuming that 𝑧! and 𝑧" are the outputs of the projector for the positive pair of 𝑥! and 𝑥", the NT-
Xent loss term for the positive pair is defined as: 

• where sim(u; v) is the cosine similarity of u and v and τ is the temperature parameter 



Classifier:

• For downstream classification tasks, the projector is discarded, and a classifier almost 
identical to the projector with two differences is used: 
• (1) the output dimension of the last dense layer is set to the number of classes
• (2) a LogSoftmax layer is added afterward.

• The input is the concatenation of the output of the encoder for all input channels of a 
multi-channel recording.



Results on emotion recognition:

• Conducted experiments on SEED dataset
• EEG data of 15 subjects recorded in 62 channels. 
• The data was recorded when participants watched 

emotional videos chosen from movies in three 
categories of emotions, namely negative, neutral, and 
positive. 

• Pass each channel through the encoder and 
concatenate the 4-dimensional output sequence.

• The input of the classifier is a 4 * 62-dimensional 
sequence of length 200.

• Table 2 shows the results of the experiments. The rows 
marked with SeqCLR-C (convolutional) and SeqCLR-R 
(recurrent) show the results without fine-tuning where 
the encoder parameters were frozen during training.

• The proposed method improves other self-supervised 
algorithms by a large gap. Moreover, when fine-tuned 
on the entire dataset, SeqCLR achieves 85.77% 
accuracy, slightly higher than the current state-of-the-
art supervised model (BiHDM).



Ablation study of channel recombination and dataset fusion

• we used channel recombination (CR) and dataset fusion (DF) to obtain a larger training set for 
self-supervised learning. 

• The table shows the effect of removing each of these steps on the accuracy of the classifiers 
without fine-tuning. 

• In particular removing channel recombination had a stronger effect in all three tasks. 



Choosing effective augmentations: 

• Set up a classification task with the convolutional SeqCLR architecture,
• only using a single augmentation at a time. 
• trained nine encoders and tested them on the three classification tasks.
• froze the encoder parameters, for training the classifiers

• We observed that the six augmentations, namely (1) zero-masking, (2) amplitude scaling, (3) 
time-shift, (4) Gaussian noise, (5) DC-shift, and (6) band-stop filter perform significantly better in 
extracting useful features for the downstream tasks. 



Ablation study of augmentations:

• masking and scaling are the most effective augmentations across the three classification tasks. 

• Additive noise and DC shift have the least effect on the performance of the classifiers 



Conclusion

• Presented a self-supervised framework, SeqCLR, for learning EEG signal representations.

• Adapted the SimCLR framework to time-series data to boost sample-efficiency and classification accuracy 
across three specific tasks:
• Emotion recognition on the SEED dataset
• Normal/abnormal classification on the TUH dataset
• Sleep-stage scoring on the SleepEDF dataset

• Achieved improved performance over other baseline self-supervised models and, with fine-tuning, 
surpassed current state-of-the-art supervised models in emotion recognition and sleep staging.

• Implemented six augmentations, identifying masking and scaling as particularly critical for feature extraction 
in downstream tasks.

• Demonstrated that self-supervised and contrastive learning is effective for deriving valuable representations 
from EEG data.


