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Importance of engagement-based interventions
Mobile health (mHealth) interventions delivered 
through mobile apps have the potential to

• promote physical activity and reduce sedentary 
time

• reduce the risk of chronic diseases (e.g., 
cardiovascular disease, diabetes, and some 
cancers).

There is some evidence suggesting a modest effect 
of these interventions in promoting healthy behaviors.
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Gal et al., 2018: The effect of physical activity interventions comprising wearables and smartphone applications on 
physical activity: a systematic review and meta-analysis



BeWell24Plus
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• An adaptive lifestyle 
intervention system

• A human-in-the-loop 
system with smartphone 
app, wearable wristband 
and a time-series activity 
forecasting model.

• Monitors app engagement and physical activity from the past and forecast 
the expected activity levels of the next day

• Based on the prediction, the system will provide recommendations and 
reminders (future work).



Multimodal Time-Series Activity Forecasting
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Notations
Symbol Meaning
T current time step

T+1 next time step

at the physical activity measure for any t

ut engagement measure for time step t

xt embedding of the fusion of the two 
modalities, at  and ut

w window size

yT +1 is a physical activity outcome. The 
value we want to forecast

f Forecasting funcion

Emb Embedding function



Dataset: BeWell24
• 58 prediabetic veterans
• Minute-level intervention app engagement (whether a user is using the app in a particular minute)
• Minute-level activity features from Fitbit, i.e., number of steps, sedentary, light physical activity (LPA), 

moderate-vigoros physical activity (MVPA) in seconds in a particular minute.

• We had to filter out 4 users with low weartime (Data for less than 10 days, each of them having at 
least 10 hours of weartime)

• Forecasting on super users: 14 most enaged users were selected.
• Forecasting on all users: 54 users were selected.
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Experimental setup
• The multimodal forecasting model takes 

input from both modalities (activity and 
engagement) and forecasts the next day 
step count for a user.

• Because of the time-series property of 
the input features, we choose LSTM to 
capture the sequential features.

• The outputs of the LSTM are passed 
through a dense layer and finally another 
dense unit as the final output.

• We use leave-one-subject-out cross 
validation method.

• We experiment and gather results for 
both regression and binary classification 
problems.
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Figure: Block diagram of the regression-based multimodal 
forecasting model. We use early fusion for this work, which 
means the different modalities are combined at the feature 
level.



Results: Forecasting on super users (1/2)
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• Multimodal forecasting gets an MAE 4.2 -
5.7% lower than single modality 
forecasting

• Also, r2 is 2.2 – 11.1% higher in 
multimodal forecasting compared to 
single modality forecasting.

• It suggests the superiority of multimodality 
in regression-based forecasting over 
single modality.



Results: Forecasting on super users (2/2)
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• Forecasting with multimodality beats the 
single modality f-score by a margin of 
4.3% for the classification threshold 8000 
steps per day.

• However, the observation is not universal 
for all different thresholds.

• Improvement of accuracy was also not 
observed in multimodality.



Results: Forecasting on All users

Metric Multimodal Single Modality

(Engagement)

Single Modality

(Activity)
MAE 2081 2372 2090

r2 0.350 0.267 0.351
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• The multimodal forecasting reduces 
the MAE by 0.4%–12.27%.

• However, r2 coefficient for 
multimodal method is 0.28% lower
than single modality.

• It is noteworthy that r2 can 
be adversely affected by outlier 
data points.



Conclusion
• We proposed a framework for activity and user engagement monitoring and adaptive 

intervention design

• We presented a formal definition of the time-series activity forecasting

• We propose an overall architecture for designing a machine learning algorithm for 
multimodal activity forecasting 

• We showed a realization of our proposed architecture based on an LSTM model

• We demonstrated the effectiveness of our forecasting approach using data collected with 58 
prediabetic people
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Thank You!

Questions?

https://ghasemzadeh.com/
hassan.ghasemzadeh@asu.edu

https://ghasemzadeh.com/
mailto:hassan.ghasemzadeh@asu.edu

