Paper Review: Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Abdullah Mamun

May 10, 2021

About this paper

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Haoyi Zhou, ¹ Shanghang Zhang, ² Jieqi Peng, ¹ Shuai Zhang, ¹ Jianxin Li, ¹ Hui Xiong, ³ Wancai Zhang ⁴

¹ Beihang University ² UC Berkeley ³ Rutgers University ⁴ SEDD Company {zhouhy, pengjq, zhangs, lijx}@act.buaa.edu.cn, shz@eecs.berkeley.edu, {xionghui,zhangwancaibuaa}@gmail.com

Abstract

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the

(b) Run LSTM on sequences.

About this paper

- Published in the 35th AAAI conference in 2021.
- Cited by 7 as of May 10, 2021
- Received the best paper award in 35th AAAI 2021.
- Main goal is building a forecasting model for multi-dimensional time series data.

Why Informer?

Transformer cell:

High 1. Space-2. Time complexity

Why Informer?

Why Informer?

Informer:

1. Query sparcity Measurement lowers Space complexity

2. **ProbSparse** lowers **Time** Complexity

3. Predicts **sequence** in one batch (Generative Style Decoder)

Informer Model Overview

1

Attention values:

long-tail distributed

Therefore:

Prune needed.

$$\mathcal{A}(\mathbf{q}_i, \mathbf{K}, \mathbf{V}) = \sum_{j} \frac{k(\mathbf{q}_i, \mathbf{k}_j)}{\sum_{l} k(\mathbf{q}_i, \mathbf{k}_l)} \mathbf{v}_j = \mathbb{E}_{p(\mathbf{k}_j | \mathbf{q}_i)}[\mathbf{v}_j]$$

1

Therefore: thresholding the queries, so that **queries** inducing top-u KLD-values are kept (rests set to zero)

u =c ln L_Q (not proven!)

However, the traversing of all the queries for the measurement $M(\mathbf{q}_i, \mathbf{K})$ requires calculating each dot-product pairs, i.e., quadratically $\mathcal{O}(L_Q L_K)$, besides the LSE operation has the potential numerical stability issue. Motivated by this, we propose an empirical approximation for the efficient acquisition of the query sparsity measurement.

Lemma 1. For each query $\mathbf{q}_i \in \mathbb{R}^d$ and $\mathbf{k}_j \in \mathbb{R}^d$ in the keys set \mathbf{K} , we have the bound as $\ln L_K \leq M(\mathbf{q}_i, \mathbf{K}) \leq \max_j \{\mathbf{q}_i \mathbf{k}_j^\top / \sqrt{d}\} - \frac{1}{L_K} \sum_{j=1}^{L_K} \{\mathbf{q}_i \mathbf{k}_j^\top / \sqrt{d}\} + \ln L_K$. When $\mathbf{q}_i \in \mathbf{K}$, it also holds.

From the Lemma [] (proof is given in Appendix D.1), we propose the max-mean measurement as

$$\overline{M}(\mathbf{q}_i, \mathbf{K}) \neq \max_{j} \{\frac{\mathbf{q}_i \mathbf{k}_j^{\top}}{\sqrt{d}}\} - \frac{1}{L_K} \sum_{j=1}^{L_K} \frac{\mathbf{q}_i \mathbf{k}_j^{\top}}{\sqrt{d}} \quad . \tag{4}$$

Experiments and Results

4 Experiment

Datasets

We extensively perform experiments on four datasets, including 2 collected real-world datasets for LSTF and 2 public benchmark datasets.

ETT (Electricity Transformer Temperature)²: The ETT is a crucial indicator in the electric power long-term deployment. We collected 2-year data from two separated counties in China. To explore the granularity on the LSTF problem, we create separate datasets as {ETTh₁, ETTh₂} for 1-hour-level and ETTm₁ for 15-minute-level. Each data point consists of the target value "oil temperature" and 6 power load features. The train/val/test is 12/4/4 months.

ECL (Electricity Consuming Load)³: It collects the electricity consumption (Kwh) of 321 clients. Due to the missing data (Li et al. 2019), we convert the dataset into hourly consumption of 2 years and set 'MT_320' as the target value. The train/val/test is 15/3/4 months.

Weather This dataset contains local climatological data for nearly 1,600 U.S. locations, 4 years from 2010 to 2013, where data points are collected every 1 hour. Each data point

Experiments and Results

Experiments and Results

Limitations

- assume all keys are IID following some Gaussian distributions (basic assumption)
- 2. It holds only for queries resulting in top-u KLDs (conition).
- 3. The attention values are long-tail distributed (verified, but on one dataset only).
- 4. The variance of query-key dot products also decreases along with the KLD (Alert, comes from no where).

Thank You!

Contact: abdullahal.mamun1@wsu.edu