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output and input efficiently. Recent studies have shown the
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About this paper

» Pyblished in the 351" AAAI conference in 2021.
» Cited by 7 as of May 10, 2021
» Receivedthe best paper awardin 35th AAAI 2021.

» Main goal is building a forecasting model for multi-dimensional
time series data.
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Why Informere

Transformer cell:

High 1. Space-2. Time complexity
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Why Informere

Attention mechanism:

3. Predicts one output at a time

values output

Attention weights

Attention
keys
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Why Informere

Informer:

1. Query sparcity Measurement lowers Space complexity

2. ProbSparse lowers Time Complexity

3. Predicts sequence in one batch (Generative Style
Decoder)
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Informer Model Overview
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Main Improvements

1 Attention values:
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Main Improvements
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1 Therefore: thresholding the queries, so that queries inducing top-u KLD-values
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Main Improvements

Attention values: /

softmax( )
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Main Improvements

However, the traversing of all the queries for the measure-
ment M (q;, K) requires calculating each dot-product pairs,
i.e., quadratically O(Lg L i ), besides the LSE operation has
the potential numerical stability issue. Motivated by this, we
propose an empirical approximation for the efficient acqui-
sition of the query sparsity measurement.

Lemma 1. For each query q; € R® and k; € R in the
keys set K, we have the bound as In Ly < M(q;. K) <

ma:u:j{q;,-k}/ﬁ} — L]T Zj‘;l{q;kjf\/a} +In L. When
q; € K, it also holds.

From the Lemma [I] (proof is given in Appendix D.1), we
propose the max-mean measurement as

— aik; 1 < qik/
M(q;, K ma: J v — L /4
(i, K) = max{ =7} Lﬁ_;\/& (4)
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Main Improvements

3 Generative Style Decoder:
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Feature map from the '
encoder .“

Informer:
Predicts the target in one batch

ProbSparse Attention matrix
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Experiments and Results

4 Experiment
Datasets

We extensively perform experiments on four datasets, in-
{:l\u;igf 2 collected real-world datasets for LSTF and 2 pub-
ic b

1 chmark datasets.

TT (Electricity Transformer Temperature)’: The ETT is
a crucial indicator in the electric power long-term deploy-
ment. We collected 2-year data ed counties
in China. To explore the granularity on the LSTF problem,
we create separate datasets as {ETTh;, ETThs} for 1-hour-
level and ETTm; for 15-minute-level. Each data point con-
sists of the target value “oil temperature™ and 6 power load
features~The train/val/test is 12/4/4 months.

(Electricity Consuming Load)f;: It collects the elec-
tricity consumption (Kwh) of 321 clients. Due to the missing
data (Li et al] 2019), we convert the dataset into hourly con-
sumption of 2 years and set ‘MT_320" as the target value.
The train/val/test 1s 15/3/4 months.

Weather [: This dataset contains local climatological data
for nearly 1,600 U.S. locations, 4 years from 2010 to 2013,
where data points are collected every 1 hour. Each data point
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Experiments and Results
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Figure 5: The total runtime of training/testing phase.
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Experiments and Results
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Limitations

1. assume all keys are IID following some Gaussian distributions
(basic assumption)

2. It holds only for queries resulting in top-u KLDs (conition).

3. The attention values are long-tail distributed (verified, but on
dataset only).

4. The variance of query-key dot products also decreases along with
the KLD (Alert, comes from no where).
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Thank You!

Contact: abdullahal.mamunl @wsu.edu
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