
Saman Khamesian 03/19/2024

HuggingGPT: Solving AI Tasks with ChatGPT
and its Friends in Hugging Face

❖ Sources: 37th Conference on Neural Information Processing Systems (NeurIPS 2023)

❖ Authors: Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, Yueting Zhuang

❖ Citation: 514

❖ Implementation: https://github.com/microsoft/JARVIS

❖ Solving complicated AI tasks with different domains and modalities is
a key step toward artificial general intelligence.

❖ While there are numerous AI models available for various domains
and modalities, they cannot handle complicated tasks autonomously.

❖ Despite the successes of current large language models like
ChatGPT, current LLM technologies are still imperfect and confront
some urgent challenges on the way to building an advanced system.

❖ The authors discuss them from these aspects:

INTRODUCTION

2

1) Limited to the input and output forms of text generation, current
LLMs lack the ability to process complex information such as vision
and speech, regardless of their significant achievements in NLP.

2) In real-world scenarios, some complex tasks are usually composed
of multiple sub-tasks, and thus require the scheduling and
cooperation of multiple models, which are also beyond the capability
of language models.

3) For some challenging tasks, LLMs demonstrate excellent results in
zero-shot or few-shot settings, but they are still weaker than some
experts (e.g., fine-tuned models).

INTRODUCTION

3

❖ In this paper, they propose an LLM-powered agent named
HuggingGPT to autonomously tackle a wide range of complex AI
tasks, which connects LLMs (i.e., ChatGPT) and the ML community
(i.e., Hugging Face) and can process inputs from different modalities.

❖ On one hand, this model disassembles tasks based on user requests,
and on the other hand, assigns suitable models to the tasks
according to the model description.

❖ By executing models and integrating results in the planned tasks,
HuggingGPT can autonomously fulfill complex user requests.

MAIN IDEA

4

MAIN IDEA

5

In this concept, an LLM acts as a controller, managing and organizing the cooperation of expert models.
The LLM first plans a list of tasks based on the user request and then assigns expert models to each
task. After the experts execute the tasks, the LLM collects the results and responds to the user.

The whole process can be divided into four stages:

1) Task Planning: Using ChatGPT to analyze and understand the
requests of users, and disassemble them into possible solvable tasks.

2) Model Selection: To solve the planned tasks, ChatGPT selects expert
models that are hosted on Hugging Face based on model descriptions.

3) Task Execution: Invoke and execute each selected model.

4) Response Generation: Finally, ChatGPT is utilized to integrate the
predictions from all models and generate responses for users.

MAIN IDEA

6

❖ They formulate task planing as the first stage of HuggingGPT, which
aims to use LLM to analyze the user request and then decompose it
into a collection of structured tasks.

❖ They require the LLM to determine dependencies and execution orders
for these decomposed tasks, to build their connections.

❖ To enhance the efficacy of task planning in LLMs, HuggingGPT
employs a prompt design, which consists of:

1) Specification-based instruction

2) Demonstration-based parsing

TASK PLANNING

7

❖ The AI assistant performs task parsing on user input, generating a list
of tasks with the following format:

SPECIFICATION-BASED INSTRUCTION

8

“task”: It represents the type of the parsed task. It covers different tasks in language, visual,
video, audio, etc.

“id”: The unique identifier for task planning, which is used for references to dependent tasks
and their generated resources.

“dep”: It defines the pre-requisite tasks required for execution. The task will be launched only
when all the pre-requisite dependent tasks are finished

“args”: It contains the list of required arguments for task execution.

[{“task”: task, “id”: task_id, “dep”: dependency_task_ids, “args”:
{“text”: text, “image”: URL, “audio”: URL, “video”: URL}}]

❖ The task must be selected from the following options:

SPECIFICATION-BASED INSTRUCTION

9

❖ To better understand the intention and criteria for task planning,
HuggingGPT incorporates multiple demonstrations in the prompt.

❖ Each demonstration consists of a user request and its corresponding
output, which represents the expected sequence of parsed tasks.

❖ By incorporating dependencies among tasks, these demonstrations
aid HuggingGPT in understanding the logical connections between
tasks, facilitating accurate determination of execution order and
identification of resource dependencies.

DEMONSTRATION-BASED PARSING

10

❖ Following task planning, HuggingGPT proceeds to the task of matching
tasks with models, i.e., selecting the most appropriate model for each
task in the parsed task list.

❖ To this end, they use model descriptions as the language interface to
connect each model.

❖ They first filter out models based on their task type to select the ones
that match the current task.

❖ Among these selected models, they rank them based on the number of
downloads on Hugging Face and then select the top-K models as the
candidates.

MODEL SELECTION

11

❖ In this stage, HuggingGPT will automatically feed these task
arguments into the models, execute these models to obtain the
inference results, and then send them back to the LLM.

❖ It is necessary to emphasize the issue of resource dependencies.

❖ To address of this issue, HuggingGPT employs a unique symbol.

❖ This symbol is utilized to track resources generated by depended
tasks, identified as <resource>-task_id, where task_id represents
the id of the depended task.

TASK EXECUTION

12

❖ During the task planning stage, if some tasks are dependent on the
outputs of previously executed tasks (e.g., task_id), HuggingGPT
sets this symbol (i.e., <resource>-task_id) to the corresponding
resource subfield in the arguments.

❖ Then in the task execution stage, HuggingGPT dynamically replaces
this symbol with the resource generated by the depended task.

❖ Furthermore, for the remaining tasks without any resource
dependencies, they will execute these tasks directly in parallel to
further improve inference efficiency.

TASK EXECUTION

13

❖ After all task executions are completed, HuggingGPT needs to
generate the final responses.

❖ HuggingGPT integrates all the information from the previous three
stages (task planning, model selection, and task execution) into a
brief summary in this stage, including the list of planned tasks, the
selected models for the tasks, and the inference results of the
models.

❖ Most important among them are the inference results, which are the
key points for HuggingGPT to make the final decisions.

RESPONSE GENERATION

14

❖ These inference results are presented in a structured format, such as
bounding boxes with detection probabilities in the object detection
model, answer distributions in the question-answering model, etc.

❖ HuggingGPT allows LLM to receive these structured inference results
as input and generate responses in the form of friendly human
language.

❖ Moreover, instead of simply aggregating the results, LLM generates
responses that actively respond to user requests, providing a reliable
decision with a confidence level.

RESPONSE GENERATION

15

SUMMARY OF MAIN STAGES

16

EXPERIMENTS & RESULTS

17

❖ To conduct their evaluation, they invite some annotators to submit
some requests. Then they collect these data as the evaluation
dataset. They use GPT-4 to generate task planning as the pseudo
labels, which cover single, sequential, and graph tasks.

Evaluation for task planning in different task types

EXPERIMENTS & RESULTS

18

❖ The following tables show the planning capabilities of HuggingGPT
on the three categories of GPT-4 annotated datasets, respectively.

Evaluation for the single task. “Acc” and
“Pre” represents Accuracy and Precision

Evaluation for the sequential task.

“ED” means Edit Distance

Evaluation for the graph task

EXPERIMENTS & RESULTS

19

❖ Furthermore, they invite some expert annotators to label task
planning (Instead of using GPT-4) for some complex requests (46
examples) as a high-quality human annotated dataset.

Evaluation on the human-annotated dataset

EXPERIMENTS & RESULTS

20

❖ In addition to objective evaluations, they also invited three human
experts to conduct a subjective evaluation in their experiments.

❖ They collected 130 diverse requests to evaluate the performance of
HuggingGPT at various stages, including task planning, model
selection, and final response generation.

❖ Three human experts were asked to annotate the provided data
according to the well-designed metrics and then calculated the
average values to obtain the final scores.

EXPERIMENTS & RESULTS

21

❖ They designed three evaluation metrics, namely passing rate,
rationality, and success rate.

❖ Passing Rate: to determine whether the planned task graph or
selected model can be successfully executed.

❖ Rationality: to assess whether the generated task sequence or
selected tools align with user requests in a rational manner.

❖ Success Rate: to verify if the final results satisfy the user’s request.

EXPERIMENTS & RESULTS

22

❖ These results indicate that their objective evaluations are aligned with
human evaluation and further demonstrate the necessity of a
powerful LLM as a controller in the framework of autonomous agents.

Human Evaluation on different LLMs. They report two metrics, passing rate (%)
and rationality (%), in the task planning and model selection stages and report
a straightforward success rate (%) to evaluate whether the request raised by
the user is finally resolved.

LIMITATIONS

23

❖ Planning: In HuggingGPT, task planning heavily relies on the
capability of LLM. Consequently, we cannot ensure that the
generated plan will always be feasible and optimal.

❖ Efficiency: HuggingGPT requires multiple interactions with LLMs
throughout the whole workflow and thus brings increasing time costs
for generating the response.

❖ Instability: This is mainly caused because LLMs are usually
uncontrollable. Although LLM is skilled in generation, it still possibly
fails to conform to instructions or give incorrect answers during the
prediction, leading to exceptions in the program workflow.

Thank you for your attention

