Claudia Shi, David Blei, Victor Veitch | Columbia University

э.

・ロト ・御ト ・ヨト ・ヨト

Adapting Neural Networks for the Estimation of Treatment Effects

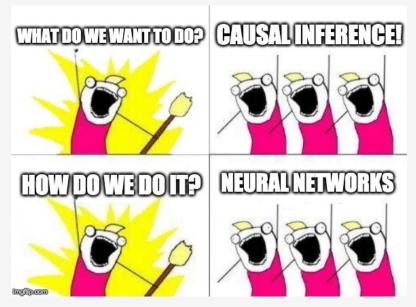
Claudia Shi, David Blei, Victor Veitch

Columbia University

Claudia Shi, David Blei, Victor Veitch | Columbia University

()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 (
 ()
 (
 ()
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (

Causal Inference with Neural Nets using Observational Data



◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

What is a Causal Question?

Questions about prediction:

- Will I have a headache tomorrow, given that I take this pill?
- What is the rate of drowning death, conditional on the ice cream sales is high?

Questions involve intervention:

- If I take this pill, will I have a headache tomorrow?
- Given that we increase the ice cream sales, what will the rate of drowning death be?

3 N 4 3 N

What is a Causal Question?

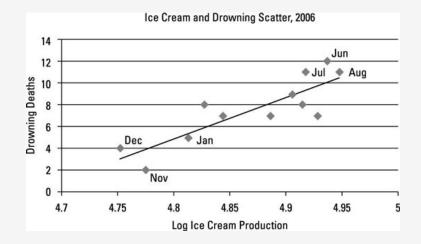
Questions about prediction:

- Will I have a headache tomorrow, given that I take this pill?
- What is the rate of drowning death, conditional on the ice cream sales is high?

Questions involve intervention:

- If I take this pill, will I have a headache tomorrow?
- Given that we increase the ice cream sales, what will the rate of drowning death be?

Observational Data: Confounding is a Problem



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Adapting Neural Networks for the Estimation of Treatment Effects | Overview

RCT Data: Not Accessible

æ

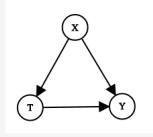
・ロト ・四ト ・ヨト ・ヨト

Causal Inference with Observational Data

Example

- treatment *T* (patient gets a drug)
- outcome Y (whether they recover)
- covariates X (illness severity, socioeconomic status)

What is expected effect of *intervening* by assigning the drug?

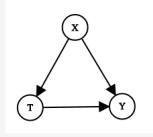


Causal Inference with Observational Data

Example

- treatment *T* (patient gets a drug)
- outcome Y (whether they recover)
- covariates X (illness severity, socioeconomic status)

What is expected effect of *intervening* by assigning the drug?



The average treatment effect is:

$$\psi = \mathbb{E}[Y \mid do(T = 1)] - \mathbb{E}[Y \mid do(T = 0)]$$
$$\psi \neq \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

Theorem (No unobserved contounding) If covariates X "block all backdoor paths" then

$$\psi = \mathbb{E}[Y \mid \operatorname{do}(T=1)] - \mathbb{E}[Y \mid \operatorname{do}(T=0)]$$
$$= \mathbb{E}[\mathbb{E}[Y \mid T=1, X] - \mathbb{E}[Y \mid T=0, X]]$$

・ロト ・昼 ・ ・ 言 ・ ・ 信 ・ うへで

The average treatment effect is:

$$\psi = \mathbb{E}[Y \mid do(T = 1)] - \mathbb{E}[Y \mid do(T = 0)]$$
$$\psi \neq \mathbb{E}[Y \mid T = 1] - \mathbb{E}[Y \mid T = 0]$$

Theorem (No unobserved confounding) If covariates X "block all backdoor paths" then

$$\Psi = \mathbb{E}[Y \mid \text{do}(T = 1)] - \mathbb{E}[Y \mid \text{do}(T = 0)]$$
$$= \mathbb{E}[\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

Average Treatment Effect: $\psi = \mathbb{E}[\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Back Door Adjustment Let $Q(t,x) = \mathbb{E}[Y \mid t,x]$, here is an estimator: $\hat{\psi}^Q = \frac{1}{n} \sum_i \left[\hat{Q}(1,x_i) - \hat{Q}(0,x_i) \right]$

・ロト ・昼 ・ ・ 言 ・ ・ 信 ・ うへで

Average Treatment Effect: $\psi = \mathbb{E}[\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$

Back Door Adjustment Let $Q(t,x) = \mathbb{E}[Y \mid t,x]$, here is an estimator: $\hat{\psi}^Q = \frac{1}{n} \sum_i \left[\hat{Q}(1,x_i) - \hat{Q}(0,x_i) \right]$

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

Alternatively:

Average Treatment Effect:

$$\psi = \mathbb{E}[\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$$

Inverse Probability of Treatment Weighted Estimator (IPTW) Let g(x) = P(T = 1 | x), here is another estimator $\hat{\psi}^g = \frac{1}{n} \sum_i \left(\frac{t_i}{\hat{g}(x_i)} - \frac{1 - t_i}{1 - \hat{g}(x_i)} \right) y_i$

Claudia Shi, David Blei, Victor Veitch | Columbia University

< ロ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Models

expected outcome:
$$Q(t,x) = \mathbb{E}[Y | t,x]$$

propensity score: $g(x) = P(T = 1 | x)$
ATE: $\psi = \mathbb{E}[\mathbb{E}[Y | T = 1,X] - \mathbb{E}[Y | T = 0,X]]$

Semi-parametric efficient

- More complicated $\hat{\psi}$ use both \hat{Q} and \hat{g}
- Nice asymptotic properties: low bias / efficient

B b d B b

Example: A Semi-parametric Efficient Estimator

Augmented IPTW $\hat{\psi} = \hat{Q}(1,x) - \hat{Q}(0,x) + \left(\frac{t}{\hat{g}(x)} - \frac{1-t}{1-\hat{g}(x)}\right) \left\{y - \hat{Q}(t,x)\right\}$

Claudia Shi, David Blei, Victor Veitch | Columbia University

We want to use neural networks to model Q and g.

How should we adapt the design and training of these networks so that $\hat{\psi}$ is a good estimate of ψ ?

・ロト ・昼 ・ ・ 言 ・ ・ 信 ・ うえで

How should we adapt the design and training of these networks so that $\hat{\psi}$ is a good estimate of $\psi?$

Adaptations

- A neural network architecture—the Dragonnet—based on the sufficiency of the propensity score for causal estimation.
- A regularization procedure—targeted regularization—based on non-parametric estimation theory.

◆□> ◆舂> ◆注> ◆注> 注:

How should we adapt the design and training of these networks so that $\hat{\psi}$ is a good estimate of $\psi?$

Adaptations

- A neural network architecture—the Dragonnet—based on the sufficiency of the propensity score for causal estimation.
- 2 A regularization procedure—targeted regularization—based on non-parametric estimation theory.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Dragonnet

<□> <舂> <き> <き> <き> <き> のへの

Highlight

If the average treatment effect ψ is identifiable from observational data by adjusting for X, then adjusting for the propensity score also suffices.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

Theorem (Rosenbaum and Rubin 1983)
If
$$\psi = \mathbb{E}[\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$$
, then
 $\psi = \mathbb{E}[\mathbb{E}[Y \mid T = 1, g(X)] - \mathbb{E}[Y \mid T = 0, g(X)]]$

 \Rightarrow estimate $\hat{Q}(t,x)$ using only parts of X relevant for ${\mathcal T}$

Highlight

If the average treatment effect ψ is identifiable from observational data by adjusting for X, then adjusting for the propensity score also suffices.

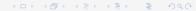
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (Rosenbaum and Rubin 1983)
If
$$\psi = \mathbb{E}[\mathbb{E}[Y \mid T = 1, X] - \mathbb{E}[Y \mid T = 0, X]]$$
, then
 $\psi = \mathbb{E}[\mathbb{E}[Y \mid T = 1, g(X)] - \mathbb{E}[Y \mid T = 0, g(X)]]$

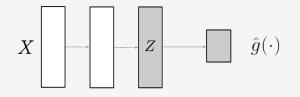
 \implies estimate $\hat{Q}(t,x)$ using only parts of X relevant for T

Goal

Estimate $\hat{Q}(t,x)$ using only parts of X relevant for T

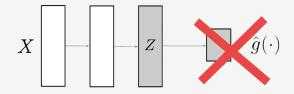


・ロト ・昼 ・ ・ 言 ・ ・ 信 ・ うえで

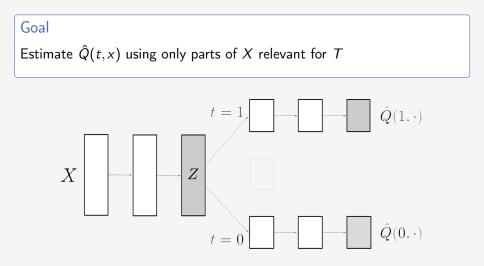


Goal

Estimate $\hat{Q}(t,x)$ using only parts of X relevant for T



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○



◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ の々で

Goal

Estimate $\hat{Q}(t,x)$ using only parts of X relevant for T

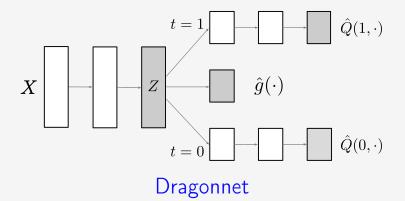
Better: Dragonnet

Goal: Estimate $\hat{Q}(t,x)$ using only parts of X relevant for T Downstream estimator: $\hat{\psi}^Q = \frac{1}{n} \sum_i \left[\hat{Q}(1,x_i) - \hat{Q}(0,x_i) \right]$

◆□▶ ◆御▶ ◆注▶ ◆注▶ 注目 のへで

Better: Dragonnet

Goal: Estimate $\hat{Q}(t,x)$ using only parts of X relevant for T Downstream estimator: $\hat{\psi}^Q = \frac{1}{n} \sum_i \left[\hat{Q}(1,x_i) - \hat{Q}(0,x_i) \right]$



Is the End-to-end model better?

э

(日) (四) (日) (日)

Is the End-to-end model better?

 Table 4: Dragonnet produces more accurate estimates than NEDnet, a multi-stage alternative. Table entries are mean absolute error over all datasets.

IHDP	$\hat{\psi}^{\mathbf{Q}}$	$\hat{\psi}^{\mathrm{TMLE}}$	ACIC	$\hat{\psi}^{\mathbf{Q}}$	$\hat{\psi}^{\mathrm{TMLE}}$
Dragonnet NEDnet	$\begin{array}{c} 0.12 \pm 0.00 \\ 0.15 \pm 0.01 \end{array}$		Dragonnet NEDnet	$0.55 \\ 1.49$	$1.97 \\ 2.80$

э

Does Dragonnet Actually Use Propensity Score Sufficiency?

TARNET ¹= Dragonnet without treatment head

•
$$\hat{\psi}^Q = \frac{1}{n} \sum_i \left[\hat{Q}(1, x_i) - \hat{Q}(0, x_i) \right]$$

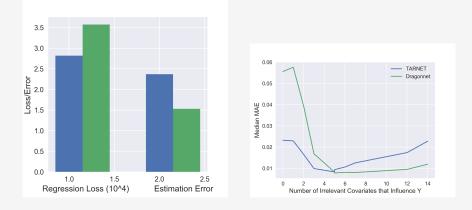
¹https://arxiv.org/abs/1606.03976

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

Does Dragonnet Actually Use Propensity Score Sufficiency?

TARNET ¹= Dragonnet without treatment head

$$\hat{\psi}^Q = \frac{1}{n} \sum_i \left[\hat{Q}(1, x_i) - \hat{Q}(0, x_i) \right]$$



¹https://arxiv.org/abs/1606.03976

Targeted Regularization

<□> <舂> <き> <き> <き> <き> のへの

Recall:

expected outcome: $Q(t,x) = \mathbb{E}[Y | t,x]$ propensity score: g(x) = P(T = 1 | x)Average treatment effect: $\psi = \mathbb{E}[\mathbb{E}[Y | T = 1, X] - \mathbb{E}[Y | T = 0, X]]$

Semi-parametric efficient

- More complicated $\hat{\psi}$ use both \hat{Q} and \hat{g}
- Nice asymptotic properties: low bias / efficient

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall:

expected outcome:
$$Q(t,x) = \mathbb{E}[Y | t,x]$$

propensity score: $g(x) = P(T = 1 | x)$
Average treatment effect: $\psi = \mathbb{E}[\mathbb{E}[Y | T = 1, X] - \mathbb{E}[Y | T = 0, X]]$

Semi-parametric efficient

- More complicated $\hat{\psi}$ use both \hat{Q} and \hat{g}
- Nice asymptotic properties: low bias / efficient

4 E 6 4 E 6

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

- based on non-parametric estimation theory.
- yields a fitted model that, with a suitable downstream estimator, guarantees desirable asymptotic properties.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

- based on non-parametric estimation theory.
- yields a fitted model that, with a suitable downstream estimator, guarantees desirable asymptotic properties.

◆□ → ◆舂 → ◆ 善 → ● ● ● ● ● ● ● ●

- based on non-parametric estimation theory.
- yields a fitted model that, with a suitable downstream estimator, guarantees desirable asymptotic properties.

- based on non-parametric estimation theory.
- yields a fitted model that, with a suitable downstream estimator, guarantees desirable asymptotic properties.

Asymptotics

If $(\hat{Q}, \hat{g}, \hat{\psi})$ satisify a certain equation, then

robustness in the double machine-learning sense--- $\hat{\psi}$ converges to ψ at a fast rate even if \hat{Q} and \hat{g} converge slowly

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

efficiency---asymptotically, $\hat{\psi}$ has the lowest variance of any consistent estimator of ψ

Asymptotics

If $(\hat{Q}, \hat{g}, \hat{\psi})$ satisify a certain equation, then

robustness in the double machine-learning sense--- $\hat{\psi}$ converges to ψ at a fast rate even if \hat{Q} and \hat{g} converge slowly

◆□▶ ◆御▶ ◆注▶ ◆注▶ 注目 のへで

 \blacksquare efficiency---asymptotically, $\hat{\psi}$ has the lowest variance of any consistent estimator of ψ

Asymptotics hold if

- **1** \hat{Q} and \hat{g} are consistent
- **2** $(\hat{Q}, \hat{g}, \hat{\psi})$ satisfy non-parametric estimating equation,

$$0=\frac{1}{n}\sum_{i}\varphi(y_{i},t_{i},x_{i};\hat{Q},\hat{g},\hat{\psi}),$$

where

$$\varphi(y,t,x;Q,g,\psi) = Q(1,x) - Q(0,x) + \left(\frac{t}{g(x)} - \frac{1-t}{1-g(x)}\right) \{y - Q(t,x)\} - \psi$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A-IPTW

1 Obvious: fit \hat{Q} and \hat{g} , then choose $\hat{\psi}$ so non-parametric estimating equation is satisfied

$$\hat{\psi} = \hat{Q}(1,x) - \hat{Q}(0,x) + \left(\frac{t}{\hat{g}(x)} - \frac{1-t}{1-\hat{g}(x)}\right) \left\{y - \hat{Q}(t,x)\right\}$$

・ロト ・昼 ・ ・ 言 ・ ・ 信 ・ うへで

3 Bad in practice; $\hat{\psi}$ has $1/\hat{g}$ terms \implies finite sample = :(

A-IPTW

1 Obvious: fit \hat{Q} and \hat{g} , then choose $\hat{\psi}$ so non-parametric estimating equation is satisfied

2

$$\hat{\psi}=\hat{Q}(1,x)-\hat{Q}(0,x)+\left(rac{t}{\hat{g}(x)}-rac{1-t}{1-\hat{g}(x)}
ight)\left\{y-\hat{Q}(t,x)
ight\}$$

・ロト ・昼 ・ ・ 言 ・ ・ 信 ・ うへで

3 Bad in practice; $\hat{\psi}$ has $1/\hat{g}$ terms \implies finite sample = :(

A-IPTW

1 Obvious: fit \hat{Q} and \hat{g} , then choose $\hat{\psi}$ so non-parametric estimating equation is satisfied

2

$$\hat{\psi}=\hat{Q}(1,x)-\hat{Q}(0,x)+\left(rac{t}{\hat{g}(x)}-rac{1-t}{1-\hat{g}(x)}
ight)\left\{y-\hat{Q}(t,x)
ight\}$$

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

3 Bad in practice; $\hat{\psi}$ has $1/\hat{g}$ terms \implies finite sample = :(

A-IPTW

1 Obvious: fit \hat{Q} and \hat{g} , then choose $\hat{\psi}$ so non-parametric estimating equation is satisfied

2

$$\hat{\psi}=\hat{Q}(1,x)-\hat{Q}(0,x)+\left(rac{t}{\hat{g}(x)}-rac{1-t}{1-\hat{g}(x)}
ight)\left\{y-\hat{Q}(t,x)
ight\}$$

3 Bad in practice; $\hat{\psi}$ has $1/\hat{g}$ terms \implies finite sample = :(

Alternative

• Choose
$$\hat{\psi}^Q = \frac{1}{n} \sum_i \left[\hat{Q}(1, x_i) - \hat{Q}(0, x_i) \right]$$
—no bad $1/\hat{g}$ terms

Fit \hat{Q} and \hat{g} so non-parametric estimating equation is satisfied

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A-IPTW

1 Obvious: fit \hat{Q} and \hat{g} , then choose $\hat{\psi}$ so non-parametric estimating equation is satisfied

2

$$\hat{\psi}=\hat{Q}(1,x)-\hat{Q}(0,x)+\left(rac{t}{\hat{g}(x)}-rac{1-t}{1-\hat{g}(x)}
ight)\left\{y-\hat{Q}(t,x)
ight\}$$

3 Bad in practice; $\hat{\psi}$ has $1/\hat{g}$ terms \implies finite sample = :(

Alternative

• Choose
$$\hat{\psi}^Q = \frac{1}{n} \sum_i \left[\hat{Q}(1, x_i) - \hat{Q}(0, x_i) \right]$$
—no bad $1/\hat{g}$ terms

Fit \hat{Q} and \hat{g} so non-parametric estimating equation is satisfied

Introduce extra parameter $\boldsymbol{\varepsilon}$ and regularization term $\gamma(y, t, x; \theta, \boldsymbol{\varepsilon})$

$$\tilde{Q}(t_i, x_i; \theta, \varepsilon) = Q^{\mathrm{nn}}(t_i, x_i; \theta) + \varepsilon \Big[\frac{t_i}{g^{\mathrm{nn}}(x_i; \theta)} - \frac{1 - t_i}{1 - g^{\mathrm{nn}}(x_i; \theta)} \Big]$$
$$\gamma(y_i, t_i, x_i; \theta, \varepsilon) = (y_i - \tilde{Q}(t_i, x_i; \theta, \varepsilon))^2$$

Then train as

$$\hat{\theta}, \hat{\varepsilon} = \underset{\theta, \varepsilon}{\operatorname{argmin}} \left[\underbrace{\hat{\mathcal{R}}(\theta; \boldsymbol{X})}_{\text{usual objective}} + \alpha \underbrace{\frac{1}{n} \sum_{i} \gamma(y_i, t_i, x_i; \theta, \varepsilon)}_{\text{targeted regularization}} \right]$$

・ロト ・昼 ・ ・ 言 ・ ・ 信 ・ うえで

Payoff

Define an estimator $\hat{\psi}^{\mathrm{treg}}$,

$$\hat{\psi}^{\text{treg}} = rac{1}{n} \sum_{i} \hat{Q}^{\text{treg}}(1, x_i) - \hat{Q}^{\text{treg}}(0, x_i), \quad \text{where}$$

 $\hat{Q}^{\text{treg}} = \tilde{Q}(\cdot, \cdot; \hat{\theta}, \hat{\varepsilon}).$

<□> <舂> <き> <き> <き> <き> のへの

Payoff

Define an estimator $\hat{\psi}^{\mathrm{treg}}$,

$$\hat{\psi}^{\text{treg}} = rac{1}{n} \sum_{i} \hat{Q}^{\text{treg}}(1, x_i) - \hat{Q}^{\text{treg}}(0, x_i), \quad \text{where}$$

 $\hat{Q}^{\text{treg}} = \tilde{Q}(\cdot, \cdot; \hat{\theta}, \hat{\varepsilon}).$

The point is:

$$0 = \partial_{\varepsilon} \big(\hat{R}(\theta; \boldsymbol{X}) + \alpha \frac{1}{n} \sum_{i} \gamma(y_{i}, t_{i}, x_{i}; \theta, \varepsilon) \big) |_{\hat{\varepsilon}} = \alpha \frac{1}{n} \sum \varphi(y_{i}, t_{i}, x_{i}; \hat{Q}^{\text{treg}}, \hat{g}, \hat{\psi}^{\text{treg}}).$$

<□> <舂> <≧> <≧> <≧> <≧> <≧</td>

Payoff

Define an estimator $\hat{\psi}^{ ext{treg}}$,

$$\hat{\psi}^{\text{treg}} = rac{1}{n} \sum_{i} \hat{Q}^{\text{treg}}(1, x_i) - \hat{Q}^{\text{treg}}(0, x_i), \quad \text{where}$$

 $\hat{Q}^{\text{treg}} = \tilde{Q}(\cdot, \cdot; \hat{\theta}, \hat{\varepsilon}).$

The point is:

$$0 = \partial_{\varepsilon} \big(\hat{R}(\theta; \boldsymbol{X}) + \alpha \frac{1}{n} \sum_{i} \gamma(y_{i}, t_{i}, x_{i}; \theta, \varepsilon) \big) |_{\hat{\varepsilon}} = \alpha \frac{1}{n} \sum \varphi(y_{i}, t_{i}, x_{i}; \hat{Q}^{\text{treg}}, \hat{g}, \hat{\psi}^{\text{treg}}).$$

That is, minimizing the targeted regularization term forces $(\hat{Q}^{\text{treg}}, \hat{g}, \hat{\psi}^{\text{treg}})$ to satisfy the non-parametric estimating equation.

Experiment

<□> <舂> <き> <き> <き> <き> のへの

Infant Health Development Program Benchmark (IHDP)

Method	Δ_{in}	Δ_{out}	Δ_{all}
BNN [JSS16]	$0.37 \pm .03$	$0.42\pm.03$	_
TARNET [SJS16]	$0.26\pm.01$	$0.28\pm.01$	_
CFR Wass[SJS16]	$0.25\pm.01$	$0.27\pm.01$	
CEVAEs [Lou+17]	$0.34\pm.01$	$0.46\pm.02$	
GANITE [YJS18]	$0.43 \pm .05$	$0.49\pm.05$	_
baseline (TARNET)	$0.16\pm.01$	$0.21\pm.01$	$0.13 \pm .00$
baseline + t-reg	$0.15\pm.01$	$0.20\pm.01$	$0.12\pm.00$
Dragonnet	$0.14\pm.01$	$0.21\pm.01$	$0.12\pm.00$
Dragonnet + t-reg	$0.14\pm.01$	$0.20\pm.01$	$0.11 \pm .00$

 Table 2: Dragonnet and targeted regularization improve estimation on average on ACIC 2018. Table entries are mean absolute error over all datasets.

 Table 3: Dragonnet and targeted regularization improve over the baseline about half the time, but improvement is substantial when it does happen. Error values are mean absolute error on ACIC 2018.

Method	Δ_{all}
baseline (TARNET)	1.45
baseline + t-reg	1.40
Dragonnet	0.55
Dragonnet + t-reg	0.35

ψ^Q	$\%_{improve}$	\uparrow_{avg}	\downarrow_{avg}
baseline:	0%	0	0
+ t-reg	42%	0.30	0.11
+ dragon	63%	1.42	0.01
+ dragon & t-reg	46%	2.37	0.01

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のくで

Summary

 Dragonnet: a neural network architecture based on the sufficiency of the propensity score for causal estimation.

◆□ → ◆御 → ◆注 → ◆注 → ○ き つへぐ

- targeted regularization: a regularization procedure based on non-parametric estimation theory.
- They both work!

Adapting Neural Networks for the Estimation of Treatment Effects. arxiv:1906.02120

<□> <舂> <き> <き> <き> <き> のへの