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Causal Inference with Neural Nets using Observational Data



Adapting Neural Networks for the Estimation of Treatment Effects | Overview

What is a Causal Question?

Questions about prediction:
Will I have a headache tomorrow, given that I take this pill?
What is the rate of drowning death, conditional on the ice cream
sales is high?

Questions involve intervention:
If I take this pill, will I have a headache tomorrow?
Given that we increase the ice cream sales, what will the rate of
drowning death be?
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Observational Data: Confounding is a Problem
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RCT Data: Not Accessible
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Causal Inference with Observational Data

Example
treatment T (patient gets a drug)
outcome Y (whether they recover)
covariates X (illness severity, socioeconomic status)

What is expected effect of intervening by assigning the drug?
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Adjustment

The average treatment effect is:

ψ = E[Y | do(T = 1)]−E[Y | do(T = 0)]

ψ 6=E[Y | T = 1]−E[Y | T = 0]

Theorem (No unobserved confounding)
If covariates X “block all backdoor paths” then

ψ = E[Y | do(T = 1)]−E[Y | do(T = 0)]
= E[E[Y | T = 1,X ]−E[Y | T = 0,X ]]
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Estimation

Average Treatment Effect:
ψ = E[E[Y | T = 1,X ]−E[Y | T = 0,X ]]

Back Door Adjustment
Let Q(t,x) = E[Y | t,x ], here is an estimator:

ψ̂
Q =

1
n ∑

i

[
Q̂(1,xi )− Q̂(0,xi )

]
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Alternatively:

Average Treatment Effect:
ψ = E[E[Y | T = 1,X ]−E[Y | T = 0,X ]]

Inverse Probability of Treatment Weighted Estimator (IPTW)
Let g(x) = P(T = 1 | x), here is another estimator

ψ̂
g =

1
n ∑

i

(
ti

ĝ(xi )
− 1− ti

1− ĝ(xi )

)
yi
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Models
expected outcome: Q(t,x) = E[Y | t,x ]
propensity score: g(x) = P(T = 1 | x)
ATE: ψ = E[E[Y | T = 1,X ]−E[Y | T = 0,X ]]

Semi-parametric efficient

More complicated ψ̂ use both Q̂ and ĝ

Nice asymptotic properties: low bias / efficient
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Example: A Semi-parametric Efficient Estimator

Augmented IPTW

ψ̂ = Q̂(1,x)− Q̂(0,x)+
(

t

ĝ(x)
− 1− t

1− ĝ(x)

){
y − Q̂(t,x)

}
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This talk

We want to use neural networks to model Q and g .

How should we adapt the design and training of these networks so
that ψ̂ is a good estimate of ψ?
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Adaptations
1 A neural network architecture—the Dragonnet—based on the

sufficiency of the propensity score for causal estimation.
2 A regularization procedure—targeted regularization—based on

non-parametric estimation theory.
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Dragonnet



Propensity Score Suffices

Highlight
If the average treatment effect ψ is identifiable from observational data
by adjusting for X, then adjusting for the propensity score also suffices.

Theorem (Rosenbaum and Rubin 1983)
If ψ = E[E[Y | T = 1,X ]−E[Y | T = 0,X ]], then

ψ = E[E[Y | T = 1,g(X )]−E[Y | T = 0,g(X )]]

=⇒ estimate Q̂(t,x) using only parts of X relevant for T
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Better: Dragonnet

Goal: Estimate Q̂(t,x) using only parts of X relevant for T

Downstream estimator: ψ̂Q = 1
n ∑i

[
Q̂(1,xi )− Q̂(0,xi )
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Is the End-to-end model better?
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Does Dragonnet Actually Use Propensity Score Sufficiency?

TARNET 1= Dragonnet without treatment head

ψ̂Q = 1
n ∑i

[
Q̂(1,xi )− Q̂(0,xi )

]

1https://arxiv.org/abs/1606.03976
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Targeted Regularization
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Recall:

expected outcome: Q(t,x) = E[Y | t,x ]
propensity score: g(x) = P(T = 1 | x)
Average treatment effect: ψ = E[E[Y | T = 1,X ]−E[Y | T = 0,X ]]

Semi-parametric efficient

More complicated ψ̂ use both Q̂ and ĝ

Nice asymptotic properties: low bias / efficient
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Targeted Regularization

targeted regularization is a modification to the objective function used
for neural network training.
based on non-parametric estimation theory.
yields a fitted model that, with a suitable downstream estimator,
guarantees desirable asymptotic properties.
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Non-parametric Estimation

Asymptotics

If (Q̂, ĝ , ψ̂) satisify a certain equation, then
robustness in the double machine-learning sense---ψ̂ converges to ψ

at a fast rate even if Q̂ and ĝ converge slowly
efficiency---asymptotically, ψ̂ has the lowest variance of any
consistent estimator of ψ
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Non-parametric Estimating Equation

Asymptotics hold if
1 Q̂ and ĝ are consistent
2 (Q̂, ĝ , ψ̂) satisfy non-parametric estimating equation,

0=
1
n ∑

i

ϕ(yi , ti ,xi ; Q̂, ĝ , ψ̂),

where

ϕ(y , t,x ;Q,g ,ψ) = Q(1,x)−Q(0,x)

+

(
t

g(x)
− 1− t

1−g(x)

)
{y −Q(t,x)}−ψ



Strategies

A-IPTW

1 Obvious: fit Q̂ and ĝ , then choose ψ̂ so non-parametric estimating
equation is satisfied

2

ψ̂ = Q̂(1,x)− Q̂(0,x)+
(

t

ĝ(x)
− 1− t

1− ĝ(x)

){
y − Q̂(t,x)

}
3 Bad in practice; ψ̂ has 1/ĝ terms =⇒ finite sample = :(

Alternative

Choose ψ̂Q = 1
n ∑i

[
Q̂(1,xi )− Q̂(0,xi )

]
—no bad 1/ĝ terms

Fit Q̂ and ĝ so non-parametric estimating equation is satisfied
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1 Obvious: fit Q̂ and ĝ , then choose ψ̂ so non-parametric estimating
equation is satisfied

2

ψ̂ = Q̂(1,x)− Q̂(0,x)+
(

t
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Targeted Regularization

Introduce extra parameter ε and regularization term γ(y , t,x ;θ , ε)

Q̃(ti ,xi ;θ ,ε) = Qnn(ti ,xi ;θ)+ ε

[ ti
gnn(xi ;θ)

− 1− ti
1−gnn(xi ;θ)

]
γ(yi , ti ,xi ;θ ,ε) = (yi − Q̃(ti ,xi ;θ ,ε))

2

Then train as

θ̂ , ε̂ = argmin
θ ,ε

[
R̂(θ ;X )︸ ︷︷ ︸

usual objective

+α
1
n ∑

i

γ(yi , ti ,xi ;θ ,ε)︸ ︷︷ ︸
targeted regularization

]



Payoff

Define an estimator ψ̂ treg,

ψ̂
treg =

1
n ∑

i

Q̂ treg(1,xi )− Q̂ treg(0,xi ), where

Q̂ treg = Q̃(·, ·; θ̂ , ε̂).

The point is:

0= ∂ε

(
R̂(θ ;X )+α

1
n ∑

i

γ(yi , ti ,xi ;θ ,ε)
)
|ε̂=α

1
n ∑ϕ(yi , ti ,xi ; Q̂

treg, ĝ , ψ̂ treg).

That is, minimizing the targeted regularization term forces (Q̂ treg, ĝ , ψ̂ treg)
to satisfy the non-parametric estimating equation.
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Experiment



Infant Health Development Program Benchmark (IHDP)



IBM Causal Inference Benchmarking Framework (ACIC)



Summary

Summary
Dragonnet: a neural network architecture based on the sufficiency of
the propensity score for causal estimation.
targeted regularization: a regularization procedure based on
non-parametric estimation theory.
They both work!



Thank You!

Adapting Neural Networks for the Estimation of Treatment Effects.
arxiv:1906.02120
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