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Causal Inference with Neural Nets using Observational Data
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Adapting Neural Networks for the Estimation of Treatment Effects = Overview
What is a Causal Question?

Questions about prediction:
m Will | have a headache tomorrow, given that | take this pill?

m What is the rate of drowning death, conditional on the ice cream
sales is high?
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Adapting Neural Networks for the Estimation of Treatment Effects = Overview
What is a Causal Question?

Questions about prediction:
m Will | have a headache tomorrow, given that | take this pill?

m What is the rate of drowning death, conditional on the ice cream
sales is high?

Questions involve intervention:
m If | take this pill, will | have a headache tomorrow?

m Given that we increase the ice cream sales, what will the rate of
drowning death be?
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Observational Data: Confounding is a Problem

Drowning Deaths
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Adapting Neural Networks for the Estimation of Treatment Effects = Overview

RCT Data: Not Accessible

pixtastock.com - 12983510
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Causal Inference with Observational Data

Example
m treatment T (patient gets a drug)
m outcome Y (whether they recover)

m covariates X (illness severity, socioeconomic status)

What is expected effect of intervening by assigning the drug?
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Adjustment

The average treatment effect is:
y=E[Y |do(T =1)] —E[Y | do(T =0)]
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Adjustment

The average treatment effect is:
y=E[Y |do(T =1)] —E[Y | do(T =0)]

y#E[Y | T=1]-E[Y | T =0]

Theorem (No unobserved confounding)
If covariates X “block all backdoor paths” then

w=E[Y |do(T =1)]—E[Y | do(T = 0)]
=E[E[Y|T=1X]-E[Y|T=0,X]|




Estimation

Average Treatment Effect:
y=E[E[Y | T=1X]~E[Y | T =0,X]




Estimation

Average Treatment Effect:
y=E[E[Y|T=1X]-E[Y|T=0,X]]

Back Door Adjustment
Let Q(t,x) =E[Y | t,x], here is an estimator:

92 = 1% [QLx) - 0o.x)

i




Adapting Neural Networks for the Estimation of Treatment Effects = Overview
Alternatively:

Average Treatment Effect:
W =E[E[Y | T=1X]~E[Y | T =0,X]

Inverse Probability of Treatment Weighted Estimator (IPTW)
Let g(x) =P(T = 1] x), here is another estimator

1 t; 1—+¢
Ag_ 1 1 :
—*E ~ - ~ Yi
e ; (g(Xi) 1—g(Xi)>
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Adapting Neural Networks for the Estimation of Treatment Effects = Overview

Models

expected outcome: Q(t,x) =E[Y | t,x]
propensity score: g(x ) =P(T=1|x)
ATE: y =E[E[Y | T =1,X]—-E[Y | T =0,X]]

Semi-parametric efficient

m More complicated ¥ use both Q and &
= Nice asymptotic properties: low bias / efficient
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Example: A Semi-parametric Efficient Estimator

Augmented IPTW

= 0010~ Q00+ (575~ 150 ) {0}
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This talk

We want to use neural networks to model @ and g.

How should we adapt the design and training of these networks so
that ¥ is a good estimate of y?
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Setup

How should we adapt the design and training of these networks so that
is a good estimate of y?

Adaptations

A neural network architecture—the Dragonnet—based on the
sufficiency of the propensity score for causal estimation.

A regularization procedure—targeted regularization—based on
non-parametric estimation theory.




Dragonnet




Propensity Score Suffices

Highlight

If the average treatment effect v is identifiable from observational data
by adjusting for X, then adjusting for the propensity score also suffices.




Propensity Score Suffices

Highlight
If the average treatment effect v is identifiable from observational data
by adjusting for X, then adjusting for the propensity score also suffices.

Theorem (Rosenbaum and Rubin 1983)
Ify=E[E[Y | T=1X]—E[Y|T=0,X]], then

v =E[E[Y|T=1gX)]-E[Y|T=0g(X)]

— estimate Q(t,x) using only parts of X relevant for T




One Natural Approach: Nednet
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Better: Dragonnet
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Better: Dragonnet

Goal: Estimate Q(t,x) using only parts of X relevant for T
m Downstream estimator: @ = %):i [@(1,x,-) = Q(O,x,-)}

7 1 1 Q(lv')

t=20 Q(Ov)

Dragonnet



Is the End-to-end model better?
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Is the End-to-end model better?

Table 4: Dragonnet produces more accurate estimates than NEDnet, a multi-stage alternative. Table
entries are mean absolute error over all datasets.

[HDP ,(Z)Q d;TMLE ACIC ,&Q ,l[)TMLE
Dragonnet  0.12+0.00 0.12 £ 0.00 Dragonnet = 0.55 1.97
NEDnet 0.154+0.01 0.12+0.00 NEDnet 1.49 2.80
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Does Dragonnet Actually Use Propensity Score Sufficiency?

m TARNET != Dragonnet without treatment head
= =11 | Q1) — Q(0,x)

Lhttps:/ /arxiv.org/abs/1606.03976



Does Dragonnet Actually Use Propensity Score Sufficiency?

m TARNET != Dragonnet without treatment head
= =11 | Q1) — Q(0,x)

—— TARNET

—— Dragonnet
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Targeted Regularization




Adapting Neural Networks for the Estimation of Treatment Effects Targeted Regularization
Recall:

expected outcome: Q(t,x) =E[Y | t,x]
propensity score: g(x)=P(T =1|x)
Average treatment effect: y=E[E[Y | T =1, X]-E[Y | T =0,X]]
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Adapting Neural Networks for the Estimation of Treatment Effects Targeted Regularization
Recall:

expected outcome: Q(t,x) =E[Y | t,x]
propensity score: g(x)=P(T =1|x)
Average treatment effect: y=E[E[Y | T =1, X]-E[Y | T =0,X]]

Semi-parametric efficient

m More complicated {r use both Q and 2

m Nice asymptotic properties: low bias / efficient
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Targeted Regularization

m targeted regularization is a modification to the objective function used
for neural network training.
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Non-parametric Estimation

Asymptotics

If (é,g—, V) satisify a certain equation, then

m robustness in the double machine-learning sense---{J converges to ¥
at a fast rate even if Q and g converge slowly




Non-parametric Estimation

Asymptotics
If (é,g—, V) satisify a certain equation, then
m robustness in the doubAIe machine-learning sense---{r converges to ¥
at a fast rate even if Q and g converge slowly
m efficiency---asymptotically, { has the lowest variance of any
consistent estimator of y




Non-parametric Estimating Equation

Asymptotics hold if
Q and g are consistent

(@,g, ) satisfy non-parametric estimating equation,
1 A A
= ;Z‘p(yhtiaxi; Qag7l’/)v
i
where

oy, t,x;Q,8,¥) = Q(1,x) — Q(0,x)

t 1—
+(g(x> Tt )){y e}~y
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Obvious: fit Q and g, then choose  so non-parametric estimating
equation is satisfied
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Strategies

A-IPTW

Obvious: fit @ and g, then choose {/ so non-parametric estimating
equation is satisfied

¥ =Q(1,x)— Q0,x) + <§(tx) —~ 1i;(tx)> {y— O(t,X)}

Bad in practice; { has 1/g terms = finite sample = :(

Alternative
m Choose @ =1y, Q(1,x) — Q(O,x,-)]—no bad 1/g terms

m Fit Q and g so non-parametric estimating equation is satisfied




Targeted Regularization

Introduce extra parameter € and regularization term y(y,t,x; 0, €)
[ ti B 1—1¢
g™ (xi;0) 1—g™(xi;0)
Y(i, ti,xi:0,€) = (yi — Q(ti,Xi; 0,¢))?

Q(ti, xi; 0,€) = Q" (t;,x;;0)+ ¢

Then train as

A A . A 1
9,£:argm|n[ R(6;X) +OC*ZY(Yi,ti,Xi;9,8)]
0. N—— ne
usual objective

targeted regularization



Payoff

Define an estimator ',

treg _ Z Qtreg

A

Qtreg — @(_’.; 9’

g).

Qtreg (0 Xi )

where



Payoff

Define an estimator "¢,

Atreg ZQUeg , / Qtreg(o X,) where

Qs = @(-,-;e,e).

The point is:

0=0e(R(6; X)+a- antuxl 0,€))le= 0~ Y 00y ti,xi QT8 2,917,



Payoff

Define an estimator ',

Atreg ZQUeg , / Qtreg(o X,) where

Qtreg — Q(‘,‘; 9,8).

The point is:
0= 88( (6;X)+a— Z}/y,,t,,x, 0 8))]8—05 Z(p visti,xi; Q2 & piree)

That is, minimizing the targeted regularization term forces (é“eg,g—, ytree)
to satisfy the non-parametric estimating equation.



Experiment




Infant Health Development Program Benchmark (IHDP)

Method Ay Aoyt Aa

BNN [JSS16] 0.37+.03 042+.03 —
TARNET [SIS16]  0.26+.01 0.28+.01 —
CFR Wass[SJS16]  0.254+.01 027+.01 —
CEVAEs [Lou+17] 0.34+.01 046+ .02 —
GANITE [YJS18] 043+.05 049+ .05 —

baseline (TARNET) 0.16+.01 0.21+.01 0.13+.00
baseline + t-reg 0.15£.01 0.20+£.01 0.12£.00
Dragonnet 0.14£.01 021+£.01 0.12£.00
Dragonnet + t-reg 0.14+.01 0.20£.01 0.11+.00




IBM Causal Inference Benchmarking Framework (ACIC)

Table 2: Dragonnet and targeted regularization im-
prove estimation on average on ACIC 2018. Table
entries are mean absolute error over all datasets.

Method Aau
baseline (TARNET) 1.45
baseline + t-reg 1.40
Dragonnet 0.55
Dragonnet + t-reg 0.35

Table 3: Dragonnet and targeted regularization im-
prove over the baseline about half the time, but im-
provement is substantial when it does happen. Error

values are mean absolute error on ACIC 2018.

’L/"Q %imp'ruve Taug ~Lavg
baseline: 0% 0 0

+ t-reg 42% 0.30 0.11
+ dragon 63% 142 0.01
+ dragon & t-reg | 46% 237 0.01




Summary

Summary
m Dragonnet: a neural network architecture based on the sufficiency of

the propensity score for causal estimation.
m targeted regularization: a regularization procedure based on
non-parametric estimation theory.

m They both work!




Thank Youl

m Adapting Neural Networks for the Estimation of Treatment Effects.
arxiv:1906.02120




	Overview
	Dragonnet
	Targeted Regularization
	Experiment

