A Survey and Taxonomy of Electronics Toolkits for Interactive and Ubiquitous Device Prototyping

MANNU LAMBRICHTS

INTRODUCTION

- General-purpose computing devices like personal computers, tablets and smartphones.
- Developing embedded solution based on custom microcontroller circuit.
- Hardware development systems such as Arduino and Phidgets.
- Processor speed, amount of memory and nature of supported input and output modalities are different.
- Several toolkits require skills in either programming or electronics.
- Sometimes the resulting prototype can run standalone.
- Some toolkits are generic in nature while others are particularly suited for building specific types of prototype.

Custom MCU

APPROACHES TO ELECTRONICS PROTOTYPING

- Type 1 Prototyping with Discrete Components
 - It would be difficult to build a copy of a circuit
 - Requires significant knowledge of electronics
- Type 2a: Integrated Microcontroller Development Boards
 - any given design typically requires integration with components that are not present on the ready-made MCU
- Type 2b: Breakout Boards and Wireless Modules
 - Need to be combined them with Type 2a and/or Type 1
 - The Advantage of Type 2 electronics prototyping over Type 1 is speed and robustness
- Type 3: Integrated Modular Systems
 - Adding discrete components or building custom modules is often hard.
 - It simplifies and expedite electronics prototyping

Toolkits

- Generic breakout boards
- Programmable low-cost WiFi modules
- Silicon vendor development boards
- FPGA development boards

ELECTRONIC PROTOTYPING PLATFORM TAXONOMY

• Nature and Application

Assembly of Prototypes

	Specific toolkits			Generic Breakout boards	Low-cost WiFi modules	Silicon vendor MCU dev. boards	FPGA dev. boards
Type of connection	Individual conductors (45%)	Multi-wire cables (27%)	Direct module-to- module (38%)	Individual	Individual	Individual	Individual
	Wireless (5%)			conductors	conductors	conductors	conductors
Connection mechanism (multi value)	Friction fit (67%)	Magnetic (8%)	Locking (7%)				
	Crocodile clips (8%)	Adhesive(3%)	Thread (3%)	Friction fit	Friction fit	Friction fit	Friction fit
	Screws (2%)	Wireless (5%)					
Connection topology	Star (45%)	Hybrid (25%)	Bus (30%)	Star	Star	Star	Star

ELECTRONIC PROTOTYPING PLATFORM TAXONOMY (1)

• Deploying and Configuring

• Availability and Adoption

Existing use	Specific toolkits			Generic Breakout boards	Low-cost WiFi modules	Silicon vendor MCU dev. boards	FPGA dev. boards
	In commercial products (7%)	Multiple copies (7%)	Only used in one-offs (86%)	Multiple copies	In commercial products	Only used in one-offs	Only used in one-offs
Commercially available	Yes (67%)	No longer (2%)	Never (31%)	Yes	Yes	Yes	Yes
Third party use	Yes (86%)	No (17%)		Yes	Yes	Yes	Yes
Open source	Fully (45%)	Partial (42%)	Closed (13%)	Fully	Fully	Fully	Fully

ANALYZING THE CHARACTERISTICS

- The level of electronics expertise required.
 - Type of connection
 - Connection topology
- The level of programming expertise required.
 - Programming style
- The ease of construction of a prototype.
- Ease of moving from a prototype to a product.
 - Existing use
 - Dependency during deployment
 - Open source

ANALYZING THE CHARACTERISTICS (1)

• Ranking of prototyping platforms

SURVEY ON ELECTRONICS TOOLKITS

Prototype is easy to iterate Prototype is easy to debug **Easy to evolve to custom PCB Platform is commercially available Platform is open source *Quick to build more copies **Use favorite programming language Platform is cheap Modules are reusable Prototype is durable Platform is comprehensive Prototype is self-contained Prototype can communicate Modules are easy to connect Easy to integrate into enclosure Prototype has low power consumption Many physical module configurations Prototype is small No special tools required Platform supports mechatronic systems Prototype looks like a real product Little programming expertise required Prototype is reprogrammed wirelessly Platform is established in education **Little electronics expertise required No wires are visible in prototype

Other disciplines

Prototype is easy to iterate Prototype is easy to debug Prototype is durable Modules are reusable Platform is cheap Platform is commercially available Prototype can communicate Prototype is self-contained Platform is open source Platform is comprehensive Modules are easy to connect Quick to build more copies* Prototype has low power consumption Use favorite programming language** Many physical module configurations Easy to integrate into enclosure Prototype is small Little electronics expertise required** Platform supports mechatronic systems Prototype looks like a real product Easy to evolve to custom PCB** No special tools required Little programming expertise required Platform is established in education Prototype is reprogrammed wirelessly No wires are visible in prototype

Always unimportant Usually unimportant Usually important Always important

SURVEY ON ELECTRONICS TOOLKITS (1)

- Only 10% of our respondents often started the prototyping process with a Type 3 toolkit.
- 39% of respondents reported they often make copies using a custom PCB.
- 12% of respondents often make copies using the same prototyping platform as used for the one-off prototype.
- 53% of all respondents often start the process with Type 2a development boards, 44% often start with solderless breadboard.