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❖ Large language models (LLMs) are increasingly used for tasks with hidden 
graphical structures, such as robotics planning, multi-hop question 
answering, knowledge probing, and structured commonsense reasoning. 
For example:


❖ In robotics and planning, LLMs are adopted to guide agents through 
structured environments.


❖ In multi-hop question answering, LLMs implicitly find connections and 
paths among a vast network of entities and concepts.


❖ Together these works demonstrate that LLMs are widely adopted for tasks 
with implicit graphical structures while achieving preliminary success.
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❖ However, one underlying yet crucial question remains under 
explored: Can LLMs reason with graphs? 

❖ More concretely, are LLMs capable of mapping textual descriptions 
of graphs and structures to grounded conceptual spaces and solving 
graph algorithm problems explicitly with natural language?
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❖ To this end, the authors propose the Natural Language Graph 
(NLGraph) benchmark, a comprehensive testbed of graph and 
structured reasoning designed for language models and in natural 
language.


❖ NLGraph includes 29,370 problems across eight graph reasoning 
tasks, ranging from simple tasks such as: connectivity, cycle and 
shortest path to more complex problems such as topological sort, 
maximum flow, bipartite graph matching, Hamilton path, and 
simulating graph neural networks.
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Overview of the NLGraph Benchmark, featuring eight tasks with varying complexity. They provide a clear 
figure for each task, along with example natural language prompts given to the LLMs.
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❖ Step 1: They begin by using a random graph generator to create 
base graphs and structures, adjusting factors like node count and 
graph sparsity. 


❖ Step 2: These graphs are then used to create problems for eight 
different graph reasoning tasks, each with varying algorithmic 
complexity.


❖ Step 3: For each task, they control the difficulty by generating easy, 
medium, and hard subsets, and then adapt the base graphs and 
design queries accordingly, allowing for scaling and detailed analysis.
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❖ How are these graphs and questions generated? They described 
each of them, but I’ll provide one example here to help understand 
the concept:


❖ Task 1: Connectivity — In an undirected graph G = {V, E}, two nodes 
u and v are connected if there exists a sequence of edges from node 
u to node v in E. They randomly select two nodes in the base graphs 
u, v ∈ V to ask whether node u and node v are connected with a true/
false question. They retain a balanced set of questions where half of 
the node pairs are connected and the other half are not connected by 
discarding additional questions.
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❖ Statistics of the NLGraph benchmark.


❖ There are two numbers, A and B. They represent two benchmarks: the standard version 
and the extended version. A is the number of tasks in the standard version, while B 
indicates the number of tasks in the extended version.


❖ Totally 5,902 problems in a standard version and 29,370 problems in an extended version.


❖ SPEC. denotes difficulty specifications, and n is the number of nodes in the graph (graph size).
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❖ Based on the NLGraph benchmark, they aim to investigate whether language 
models can solve graph algorithm problems in natural language by evaluating 
large language models and different prompting approaches.


❖ They adopt a wide range of prompting approaches as baselines. Specifically, 
zero-shot prompting, few-shot in-context learning [Brown et al., 2020], chain-
of- thought prompting (CoT) [Wei et al., 2022], zero-shot chain-of-thought (0-
CoT) [Kojima et al., 2022], least-to-most (LTM) [Zhou et al., 2023], and self-
consistency (SC) [Wang et al., 2023] are leveraged to tackle various graph 
reasoning tasks in the NLGraph benchmark.


❖ They did not provide descriptions of the approaches and only cited the relevant 
references. However, out of respect for you as the audience, I have included 
these brief descriptions of each one:
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❖ Zero-shot prompting: The model is asked to perform a task without any examples or prior 
context, relying solely on its pre-existing knowledge.


❖ Few-shot in-context learning: The model is provided with a few examples (in-context) before 
being asked to perform the task, helping it learn from the context provided.


❖ Chain-of-thought prompting (CoT): The model is guided in the prompt to break down its 
reasoning into intermediate steps, improving its ability to solve complex, multi-step problems.


❖ Zero-shot chain-of-thought (0-CoT): Similar to CoT, but without any examples. The model is 
encouraged to reason step-by-step without prior task-specific prompts.


❖ Least-to-most (LTM): The model starts with simpler subproblems and gradually works its way up 
to more complex ones, solving the easier tasks first.


❖ Self-consistency (SC): The model generates multiple answers to the same problem, and then the 
final answer is determined by selecting the most consistent or common response among them.
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❖ They also adopt a Random baseline: 


❖ For true/false questions such as connectivity and cycle, they use Random to 
denote a baseline that randomly selects an answer from true and false with an 
expected accuracy of 50%; 


❖ For the shortest path task, Random denotes a baseline that randomly selects a 
valid path between the query node pair. 


❖ For the maximum flow task, Random denotes a baseline that randomly selects a 
value between 0 and the sum of all the edges’ capacities. 


❖ The performance comparison between different prompting techniques and the 
Random baseline could indicate whether LLMs are capable of performing graph 
reasoning instead of giving randomly generated answers.
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❖ Model performance on the connectivity, cycle, and shortest path tasks. 
PC denotes partial credit. Large language models with CoT or CoT+SC 
prompting greatly outperforms the random baseline by 37.33% to 
57.82%, indicating that LLMs have preliminary graph reasoning abilities.


❖ What is Partial Credit? Partial credit is a scoring approach that assigns a 
proportion of full credit based on how close a solution is to the optimal 
one, rather than an all-or-nothing approach.
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❖ (left) Model performance on the topological sort task. CoT, LTM, and self-consistency are 
mostly ineffective on this problem. 


❖ (right) Model performance on the maximum flow task. Few-Shot  prompting outperforms 
CoT+SC prompting on both easy and hard subsets, suggesting that LLMs fall short of 
generating valid intermediate steps to solve the more complex graph reasoning problem. 


❖ Together these results demonstrate that advanced prompting is ineffective for advanced 
graph reasoning.
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❖ (Left) Model performance on the Hamilton path task: Zero-shot prompting 
consistently performs better than other techniques. 


❖ (Right) Model performance on the bipartite graph matching task: In-context 
learning and advanced prompting have little impact on this complex problem. 


❖ These results suggest that in-context learning may be less effective for 
advanced graph reasoning tasks.
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❖ In this work, they explore whether LLMs can explicitly perform graph reasoning, 
meaning solving graph algorithm problems using natural language across different 
problem types and prompting techniques.


❖ They introduce the NLGraph benchmark, a comprehensive test set with 29,370 
problems across eight tasks of varying complexity. 


❖ Their evaluation of LLMs and prompting methods on NLGraph reveals that: 


1. LLMs show some initial graph reasoning abilities


2. The advantage of advanced prompting and in-context learning decreases with 
more complex tasks


3. LLMs are sensitive to unrelated correlations in problem settings.


❖ Enhancing LLMs' graph reasoning skills for complex tasks is still a challenge, and they 
encourage future research to build on their NLGraph benchmark.



Thank you for your attention


