A survey of methods for time series change point detection Samaneh Aminikhanghahi, Diane J. Cook

Published in 2016 in Knowledge of Inofmation Systems 1100+ citations as of today

Presenter: <u>Abdullah Mamun</u>

Date: November 8, 2023

Sample time series and change points (*horizontal lines* indicate separate states)

Motivation

- Medical condition monitoring
- Human activity analysis
- Climate change detection

Changepoint detection variations

- Mean-changepoint
- Variance-changepoint
- Mean-variance changepoint

Days

Piece-wise linear CPD

ts_ar['coerr_1'] = piece_wise_ir_cpa(ts_ar, 'sea_ratio', peice_airr=23)

ChangeFinder

ChangeFinder

Change Finder [34,42,63] is another commonly used method which reduces the problem of change point detection into time series-based outlier detection. This method fits an auto regression (AR) model onto the data to represent the statistical behavior of the time series and updates its parameter estimates incrementally so that the effect of past examples is gradually discounted. Considering time series x_t , we can model the time series using an AR mode of the *k*th order by:

 $x_t = \omega x_{t-k}^{t-1} + \varepsilon$

where $x_{t-k}^{t-1} = (x_{t-1}, x_{t-2}, ..., x_{t-k})$ are previous observations, $\omega = (\omega_1, ..., \omega_k) \in \mathbb{R}^k$ are constants, and ε is a normal random variable generated according to a Gaussian distribution like white noise. By updating model parameters the probability density function at time *t* is calculated and we have a sequence of probability densities { $p_t : t = 1, 2, ...$ }. Next, an

Ruptures

Ruptures CPD model for Sed minutes of user 181042

Ruptures

The intuition behind PELT is that for a time step to be detected as a change point, it must reduce the segmentation cost by more than the penalty value that is added. If the cost reduction is less than the added penalty, the penalized cost will increase, and the time step will not be detected as a change point.

Supervised methods

 Binary **Decision Tree** classification: **Nearest Neighbor** Support Vector Machine (SVM) changepoint / no Naïve Bayes **Multi Class** changepoint Classifiers **Baysian Net** Virtual classifier Hidden Markov Model (HMM) **Conditional Random Field (CRF)** Gaussian Mixture Model (GMM) Supervised Method Support Vector Machine (SVM) **Binary Class Naïve Bayes** Classifiers **Logistic Regression** Virtual

Classifier

Fig. 3 Supervised methods for change point detection

Metrics beyond accuracy, and f1scores

G-mean is commonly used as an indicator of CPD performance. This utilizes both sensitivity and specificity measures to assess the performance of the algorithm both in terms of the ratio of positive accuracy (sensitivity) and the ratio of negative accuracy (specificity).

$$G\text{-mean} = \sqrt{\text{Sensitivity} \times \text{Specificity}} = \sqrt{\frac{\text{TP}}{\text{TP} + \text{FN}}} \times \frac{\text{TN}}{\text{FP} + \text{TN}}$$

- Unsupervised methods
- Clustering,
- Outlier detection

Unsupervised methods – Model fitting

Yet another time series clustering approach is Model fitting, in which a change can be considered to occur when a new data item or block of data items do not fit into any of the existing clusters [60]. Assuming a data stream $\{x_1, \ldots, x_i, \ldots\}$, change point is occurred after data point x_i , if the following logical expression is true.

change =
$$\bigwedge_{K}^{j=1} \left[d\left(x_{i+1}, \text{center}\left(C_{j} \right) \right) > \text{radius}\left(C_{j} \right) \right]$$

where $d(x_{i+1}, \text{center}(C_j))$ is the Euclidian distance between a newly incoming data point x_{i+1} and the center of cluster C_j , radius (C_j) is the radius of cluster j, K is the number of clusters, and \wedge is the logical and symbol. The radius of cluster C with n data point and mean value of μ is:

radius (C) =
$$\sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$$

Neural network –based detection Label with ruptures

Labeling with ruptures

[[148	186	153	108	146	155	125	Θ	Θ	Θ	0	0]	
[146	155	125	Θ	0	Θ	0	0	Θ	61	115	134]	
[0	0	0	0	0	61	115	134	94	127	145	139]	
[0	61	115	134	94	127	145	139	158	77	214	202]	
[94	127	145	139	158	77	214	202	204	260	192	111]	
[158	77	214	202	204	260	192	111	116	144	326	160]	
[204	260	192	111	116	144	326	160	135	157	188	133]	
[116	144	326	160	135	157	188	133	170	147	207	172]	
[135	157	188	133	170	147	207	172	247	143	180	152]	
[170	147	207	172	247	143	180	152	120	193	184	124]	
[247	143	180	152	120	193	184	124	241	130	172	167]	
[120	193	184	124	241	130	172	167	186	142	141	109]	
[241	130	172	167	186	142	141	109	0	0	0	0]	
[186	142	141	109	0	0	Θ	0	0	0	0	144]	
[0	0	0	0	0	0	0	144	182	162	200	175]	
[0	0	0	144	182	162	200	175	158	126	131	240]	
[182	162	200	175	158	126	131	240	172	153	211	175]	

0] 0 000 0 0 0 o 0 $1 \ 1 \ 1 \ 1 \ 1 \ 1$ Ч

Changepoint detection with MLP

Changepoint detection

Learning curves of changepoint detection with MLP v1 training 14 validation 12 10 8 6 4 2 -0 2.5 15.0 17.5 5.0 7.5 10.0 12.5 20.0 epochs

loss

Test accuracy: 0.8696682453155518

https://abdullah-mamun.com a.mamun@asu.edu