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❖ Continuous Glucose Monitoring (CGM) has become a core tool for 
diabetes management and real-time decision making.


❖ One particularly promising approach to meeting patient needs is to 
combine CGM with AI to predict near-future glucose values.


❖ Most prior studies rely on:


❖ simulated CGM data


❖ small patient cohorts


❖ As a result, prediction accuracy remains limited, especially for longer 
horizons (e.g. 2 h)
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❖ Poor performance is driven not only by limited data, but also by:


❖ training models from random initialization


❖ lack of learned glucose generation knowledge


❖ How to extract and leverage latent patterns in large-scale CGM data 
remains an open question.


❖ To address this gap, they presented a new approach to glucose 
prediction for diabetes management that harnesses the pre-training 
technique exemplified in large language models (LLMs).
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❖ The key conceptual move is: Treat CGM like language.


❖ CGM-LSM is just a GPT-style decoder trained with next-token cross-entropy 

❖ The only difference is that tokens are glucose values instead of words.


❖ They argue that glucose has latent structure, just like language, and that pre-
training can uncover it.
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❖ They do NOT regress glucose as a real number. Instead:


❖ Each glucose value (0–400 mg/dL) is a categorical token


❖ Vocabulary size ≈ 400


❖ For instance, a glucose level of 153 becomes the token “153”.


❖ In the pre-training task of next glucose value prediction, the model 
was expected to learn the semantic meanings of the embeddings for 
these glucose value tokens.
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Tokenization



❖ Teaches the model how glucose evolves over time, without any labels, 
by learning to predict the next glucose value from previous ones.


❖ They represent one CGM instance as a sequence:





❖ Where:


❖  = glucose value (token) at time step i


❖ Each token corresponds to a 5-minute CGM reading


❖  (24h past + 2h future)

s1, s2, s3, . . . , sn

si

n = 312
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Problem Definition for Pre-Training



❖ Mathematically, this can be described as maximizing the likelihood of a 
glucose value  given the preceding glucose values .





❖ Where:


❖  : Model Parameters (Transformer Weights)


❖  : Length of the glucose sequence


❖  : Glucose token at time 


❖ : Model’s predicted probability

si s1, s2, s3, . . . , si−1

L(θ) =
n

∑
i=1

log pθ(si |s1, . . . si−1)

θ

n

si i

pθ( . )
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Problem Definition for Pre-Training



❖ Autoregressive pre-training of CGM-LSM, where the model predicts 
each next glucose token from past tokens and is optimized using cross-
entropy loss over the full sequence.
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Pre-Training Process Overview



❖ After the CGM-LSM was trained, it could be used to generate new 
glucose sequences (similar to that of the GPT models):





❖ Where:


❖  : Model parameters


❖  : Hidden states derived from transformer blocks


❖  : Output projection matrix


❖ They use greedy decoding:


p(si+1 |s1, . . . , si ; θ) = softmax(hiW )

θ

hi

W

si+1 = argmax p(si+1 |s1, . . . si−1)
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Problem Definition for Prediction



❖ During prediction, CGM-LSM auto-regressively generates future 
glucose values from past CGM context, with performance evaluated 
using rMSE.
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Prediction Process Overview



❖ CGM-LSM uses a decoder-only transformer architecture, similar to GPT-
style language models


❖ The model relies entirely on self-attention to process glucose sequences.


❖ In a decoder-only transformer, a stack of decoder blocks generates one 
glucose value token at a time in an autoregressive manner.


❖ Each decoder block in the transformer comprises two main components: 


❖ a multi-head self-attention mechanism


❖ and a position-wise fully connected feed-forward network.
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Structure



❖ The model is pre-trained on a large, real-world dataset collected by Welldoc.


❖ The dataset contains CGM sampled every 5 minutes.


❖ After preprocessing and filtering, the final dataset includes:


❖ ~15.96 million valid CGM instances


❖ 592 patients in total


❖ Both T1D and T2D patients


❖ Diverse age groups and genders


❖ Each CGM instance represents a 26-hour window:


❖ 24 hours of past glucose values (input)


❖ 2 hours of future glucose values (prediction target)


❖ Only CGM data are used (No insulin, carbs, or lifestyle features)
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Pre-Training Dataset



❖ Patients are first divided at the patient level:


❖ Held-out test set


❖ ~10% of patients


❖ Completely excluded from training


❖ Used to evaluate zero-shot performance on unseen patients 

❖ For the remaining ~90% of patients:


❖ CGM instances are ordered chronologically per patient


❖ The latest 10% of instances are reserved as a temporal test set 

❖ The remaining instances are randomly split into:


❖ Training set (80%)


❖ Internal test set (10%)
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Welldoc Dataset



❖ Internal test → unseen instances from known patients


❖ Temporal test → future periods for known patients


❖ Held-out test → entirely unseen patients
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Welldoc Dataset



❖ The pre-trained model is additionally evaluated on the OhioT1DM dataset


❖ OhioT1DM is used as an external Hold-Out dataset.


❖ This dataset includes:


❖ 12 T1D patients


❖ CGM data sampled at 5-minute intervals


❖ OhioT1DM is never used during pre-training


❖ Evaluation on this dataset represents a strict zero-shot test against prior work


❖ Baseline models are trained on OhioT1DM, while CGM-LSM is evaluated directly 
without retraining.
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OhioT1DM Dataset
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Dataset



❖ Single NVIDIA A100 (80 GB)


❖ GPT-2 decoder-only Transformer


❖ Transformer layers: 12


❖ Attention heads: 12


❖ Vocabulary:


❖ 400 glucose value tokens


❖ 17 special tokens


❖ Embedding dimension: 768


❖ Batch size: 256


❖ Training duration: 10 epochs


❖ Optimizer: AdamW

❖ β₁ = 0.9


❖ β₂ = 0.999


❖ Learning rate: 5 × 10⁻⁵


❖ Dropout: 0.1


❖ LayerNorm ε: 1 × 10⁻⁵


❖ Hyperparameters selected via grid 
search

Setup

17

Implementation Details



❖ In this study, they evaluated model performance using four metrics:


1. Root Mean Squared Error (rMSE)


2. Mean Absolute Error (MAE)


3. MAE with a tolerance of 10 units (MAEWith10)


4. Religion Accuracy


❖ MAEWith10 measures the proportion of absolute errors that fall within 
a specified tolerance level, here set at 10 units.


❖ Glucose Region Accuracy evaluates the accuracy of predictions by 
categorizing continuous glucose values into predefined regions.
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Evaluation Metrics
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Tokenization Embeddings
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rMSE Report
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Model Performance on Different Groups



Thank you for your attention


