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Abstract

Objective: Nocturnal hypoglycemia is a known challenge for people with type 1 diabetes, especially for physically active individuals or those on
multiple daily injections. We developed an evidential neural network (ENN) to predict at bedtime the probability and timing of nocturnal hypogly-
cemia (0-4 vs 4-8 h after bedtime) based on several glucose metrics and physical activity patterns. We utilized these predictions in silico to pre-
scribe bedtime carbohydrates with a Smart Snack intervention specific to the predicted minimum nocturnal glucose and timing of nocturnal
hypoglycemia.

Materials and methods: \We leveraged free-living datasets collected from 366 individuals from the T1DEXI Study and Glooko. Inputs to the ENN
used to model nocturnal hypoglycemia were derived from demographic information, continuous glucose monitoring, and physical activity data.
We assessed the accuracy of the ENN using area under the receiver operating curve, and the clinical impact of the Smart Snack intervention
through simulations.

Results: The ENN achieved an area under the receiver operating curve of 0.80 and 0.71 to predict nocturnal hypoglycemic events during 0-4 and
4-8 h after bedtime, respectively, outperforming all evaluated baseline methods. Use of the Smart Snack intervention reduced probability of noc-
turnal hypoglycemia from 23.9 = 14.1% to 14.0 = 13.3% and duration from 7.4 = 7.0% to 2.4 = 3.3% in silico.

Discussion: Our findings indicate that the ENN-based Smart Snack intervention has the potential to significantly reduce the frequency and dura-
tion of nocturnal hypoglycemic events.

Conclusion: A decision support system that combines prediction of minimum nocturnal glucose and proactive recommendations for bedtime
carbohydrate intake might effectively prevent nocturnal hypoglycemia and reduce the burden of glycemic self-management.
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Background and significance

Nocturnal hypoglycemia accounts for more than 50% of
level-two hypoglycemia events (glucose <54 mg/dL) in per-
sons with type 1 diabetes (T1D)."* Increased levels of late
day physical activity (PA) dramatically increase risk for noc-
turnal hypoglycemia.> However, this risk can be difficult to
predict because of individual variation in whole body insulin
sensitivity post-exercise’ and the variability in the blunting of
the counterregulatory responses to ensuing hypoglycemia
after exercise, which may be impacted by several variables
such as recent hypoglycemia events, sex, and the intensity of
exercise.”® Even with the use of intermittently scanned or
real-time continuous glucose monitoring (CGM), nocturnal
hypoglycemia can be difficult to manage clinically as individu-
als are unlikely to recognize symptoms while sleeping and
may not awaken to hypoglycemia alarms from CGM
systems.”*'°

Although advanced insulin therapies are now available,
most people with T1D continue to use multiple daily

injections (MDI), with or without CGM.'"'? A recent
study showed that MDI users using CGM spent more time
with glucose <54 mg/dL and experienced more nocturnal
hypoglycemia than standard pump or hybrid closed-loop
(HCL) users.'?

Parallel approaches have emerged to separately prevent or
predict nocturnal hypoglycemia. Guidelines recommend mod-
ifications to insulin doses and carbohydrate consumption
without bolus insulin administration following exercise to
help lower the risk of post-exercise nocturnal hypoglyce-
mia,"*™"? but these guidelines rely heavily on user experiences,
their perceived risk for nocturnal hypoglycemia, and actions
to make adjustments within the appropriate time period.
While there have been several publications demonstrating
methods for predicting nocturnal hypoglycemia,'®™*3 these
algorithms do not estimate the risk and timing of nocturnal
hypoglycemia relative to exercise based on known risk factors
(eg, antecedent exercise intensity, duration, and recent glucose
trends) nor do they provide predictive uncertainty. A system
that both predicts nocturnal hypoglycemia and suggests



Journal of the American Medical Informatics Association, 2024, Vol. 31, No. 1 111

Table 1. Description of datasets used for model training and testing.

Characteristic Dataset
T1DEXI study Glooko
Pilot study Main study

Participants, N 7 88 271
Nights with data, N 210 2278 41 666
Physical activity data Yes Yes No
Demographics

Biological sex (female/male/unknown), N 2/5/0 55/33/0 79166/126

Age (mean=SD) at baseline, years 28 £11 38+ 14 26*18

Opverall glucose control, average [range| at the participant level
Time in target range 70-180 mg/dL, %

52.7[38.1, 66.4]

72.3[26.5,98.7] 59.2[2.6,100.0]

Time above range >180 mg/dL, % 37.3(21.3,55.1] 24.0[0.0, 73.5] 39.110.0, 97.4]
Time below range <70 mg/dL, % 10.0[1.3,15.7] 3.710.0,15.8] 1.7 [0.0, 15.4]
Overnight hypoglycemia (11:00 pMm-7:00 AM), average [range] at the participant level
Probability of nocturnal hypoglycemia, % 44.8 24.3 16.2
Time in overnight glucose <70 mg/dL, % 15.112.1,33.3] 3.9[0.0, 18.5] 2.1[0.0, 53.8]
Time in overnight glucose <70 mg/dL, min 73 (10, 160] 18 [0, 80] 910, 94]
Time in overnight glucose <54 mg/dL, % 7.210.9,18.2] 1.0[0.0, 10.0] 0.4 (0.0, 8.1]
Time in overnight glucose <54 mg/dL, min 34 1[5, 88] 510, 44] 210, 39]

prophylactic carbohydrate consumption at bedtime after a
predominantly sedentary day or an active day has the poten-
tial to reduce exposure to nocturnal hypoglycemia safely and
effectively and lower the patient burden for glycemic self-
management.

Objective

To develop a unified approach to nocturnal hypoglycemia
prediction and prevention using an algorithm that predicts
the probability of an event and provides an estimated time
frame for its occurrence and a measure of uncertainty. This
information is passed to a Smart Snack algorithm to recom-
mend carbohydrate intake at bedtime. This system aims to
help people with T1D on MDI to avoid nocturnal hypoglyce-
mia, and it is evaluated i silico.

Materials and methods
Datasets

We used free-living data from 366 individuals from the
T1DEXI Study and Glooko Inc. (Mountain View, CA, USA)
(refer to Table 1 for details). The TIDEXI Study is a large
real-world observational study conducted at-home, involving
the collection of glucose management data from 497 people
with T1D to study the effects of different types of exercise (ie,
cardio, interval, and strength) on glycemic control. Partici-
pants from the T1DEXI Study were recruited from around
the United States. An Institutional Review Board approved
the TIDEXI Study and electronic informed consent was
obtained from each participant. The study had 2 phases: the
initial pilot data collection®* followed by the subsequent main
data collection.”® The T1DEXI dataset included data from
physically active adults (mean age 37 = 14 years; HbAlc
6.6 =0.8% [49 = 8.7 mmol/mol]) on MDI, standard insulin
pump, or HCL therapies, who wore an unblinded CGM and
a fitness tracker during 4 weeks (dataset available at https://
doi.org/10.25934/PR00008428). In brief, participants per-
formed randomly assigned structured exercise sessions and
reported PA, food intake, and insulin dosages (in the case of

MDI users). The outcomes of the study included the change in
glucose during exercise and differences in time in rage 70-
180 mg/dL between physically active versus sedentary days.>’

Although the T1DEXI dataset contains data from partici-
pants on various insulin treatment modalities; in this work,
we exclusively employed data from participants on MDI ther-
apy (N=7 from the pilot phase and N=88 from the main
phase) as this group represents the target population for the
prediction-based intervention developed in this research.

The Glooko dataset comprises glucose and insulin data
from MDI users (N=271) who lived in the United States.
Demographic data in the Glooko dataset were limited to age
and biological sex. Glooko provided the de-identified dataset
for the study with required consent from patients and health-
care providers.

For algorithm development and testing, the participants
from the T1IDEXI and Glooko datasets were split in an 80:20
ratio such that 80% of the data was used only for model
development while the remaining 20% was used for testing.
We did not expect any institutional bias in either the TIDEXI
dataset or the Glooko dataset because participants were not
recruited directly by any single institution but rather were
recruited from around the United States. The TIDEXI dataset
included labeled PA and sleep data. Distribution of bedtimes
from the T1DEXI Study was used to estimate bedtime in the
Glooko dataset. We ensured that there were no insulin
boluses reported in the 8 h after the estimated bedtimes.

Feature extraction and selection

Glucose features were derived from CGM (eg, glucose statis-
tics, low/high blood glucose index, continuous overlapping
net glycemic action,”® percentage time in clinically relevant
glucose ranges,”” and long continuous glucose rises or drops)
and calculated across different time frames prior to bedtime
(ie, previous 7 nights, daytime [7:00 AM to bedtime], 1-24 h,
and 30 min) and at bedtime. A maximum allowable threshold
of 30% missing CGM data was employed during feature cal-
culation to ensure that each participant had sufficient data
represented in the dataset. Data in the training and test sets
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were well balanced and had equivalent distributions to miti-
gate the influence of potential outliers.

Agglomerative clustering®® was used for feature selection.
Glucose features were clustered based on the features’ pair-
wise mutual information (MI),'? such that correlated features
were grouped together. The optimal number of clusters was
determined to be 69 by maximizing the Silhouette score.”’
From each cluster, the feature with maximum MI with noc-
turnal hypoglycemia was included in the model. Other widely
used approaches such as Lasso®® could have been used for
feature selection. However, Lasso performs erratically when
features are correlated.’!

Missing values of glucose features and the duration of PA
were imputed with the median value of the features in the
training dataset and standardization was used for feature scal-
ing. Scaling of continuous features was done by subtracting
the feature mean from the unscaled feature value and then
dividing by the feature standard deviation. Table S1 shows
the mean and standard deviation values used for feature
scaling.

We did not apply sampling or data augmentation methods
to address dataset imbalance due to the relatively moderate
nature of this imbalance (ie, ~100:10 in our training data-
set).>? Furthermore, the use of imbalance correction techni-
ques may not consistently lead to substantial enhancements in
accuracy and might yield poorly calibrated models that over-
estimate the probability of infrequent events®? such as noctur-
nal hypoglycemia in T1D.

Evidential regression

We optimized a fully connected evidential neural network
(ENN)** to predict, at bedtime, the minimum nocturnal glu-
cose along with associated predictive uncertainty. Although a
universally accepted definition of nocturnal hypoglycemia has
not been established, in this study we conservatively defined
nocturnal hypoglycemia as occurring when minimum noctur-
nal glucose levels drop below 70 mg/dL during either the ini-
tial or later 4-h period following bedtime. Evidential
regression has been used previously for personalized short-
term glucose prediction.’ The evidential regression frame-
work presented by Amini et al.>* and adopted in this work is
presented in more detail in the Supplementary Material.

The architecture of the ENN (input layer: 81 units, hidden
layers: 8 and 4 units, evidential output layer: 4 units) and
training hyperparameters (starting learning rate: 2.4x1073,
batch size: 128, and evidential penalty i: 2.6x107°) were
found via Bayesian optimization using 5-fold participant-level
cross-validation on the training dataset. One output of the
ENN (y) in the Supplementary Material, is an estimation of
the minimum glucose overnight. The 3 other outputs of the
ENN (v, o, f) were used to estimate the uncertainty of the min-
imum glucose estimate (see Supplementary Material). An indi-
cator variable was used to specify whether the minimum
overnight glucose is in hours 0-4 or 4-8 relative to bedtime.

Model parameters were optimized using the Adam opti-
mizer.>® Early stopping was used to prevent overfitting in the
cross-validation runs. This means that training was halted
before completing a usually very large set number of training
epochs if the performance of the model as measured by the
area under the receiver operating characteristic curve
(AUROC) on the validation subset started to degrade.

Nocturnal hypoglycemia prediction evaluation
metrics

AUROQC, sensitivity, and specificity as well as the area under
the precision-recall curve (AUPRC) were used to assess predic-
tion accuracy. Risk thresholds for predicting nocturnal hypo-
glycemia were selected by maximizing the harmonic mean of
the specificity and sensitivity on the training dataset to balance
type I (false positives) and type II (false negatives) errors. In this
application, both type I and type II errors are undesirable.
Type I errors will result in high glucose levels and possibly
weight gain if unnecessary treatments are indicated based on
false positive predictions while type II errors will result in possi-
bly preventable nocturnal hypoglycemia events.

Smart Snack intervention

Consumption of a bedtime snack was recommended if there
was a predicted high likelihood of nocturnal hypoglycemia.
The snack content was designed in collaboration with clini-
cians to address both the severity and timing of hypoglycemia.
The carbohydrate content of the snack varied from 15t0 30 g
based on the predicted minimum nocturnal glucose. Rapid-
acting carbohydrates were recommended when the likelihood
of a hypoglycemia event exceeded a target threshold in the
first 4 h of sleep. A mixed macronutrient snack with protein,
fat, and fiber was recommended to delay carbohydrate
absorption and address hypoglycemia if the ENN predicted a
high likelihood of hypoglycemia that again exceeded a thresh-
old in the latter half of the night. The thresholds for likelihood
of hypoglycemia were determined through hyperparameter
tuning during training.

In silico evaluation of hypoglycemia prediction and
Smart Snack intervention

The effect of the Smart Snack intervention was evaluated in a
virtual population of 20 adults with T1D. We matched 20
participants from a 4-arm automated insulin delivery study
that we published previously’” to the most similar virtual
adults in the Oregon Health & Science University virtual pop-
ulation using total daily insulin requirements and body
weight.*® Each virtual adult participated in an iz silico 3-arm
crossover study with 77 days per arm, including (1) standard
basal and bolus regimens without Smart Snack intervention,
(2) Smart Snack intervention based on ENN predictions, and
(3) Smart Snack intervention using knowledge of actual over-
night glucose values (the Oracle forecast method).!” Varying
insulin dosing regimens were imposed on the participants to
reflect the impact of the intervention in a more real-world sit-
uation. The final in silico dataset reflects 4620 days of virtual
participant outcomes. Glycemic outcomes are based on vir-
tual participant CGM data and reported for the overnight
period defined as 11 pM-7 aMm, as well as for the 24 h following
bedtime at 11 pm. Bedtime was fixed for the iz silico trial.

Results

Figure 1 shows the top-20 glucose features along with the MI
with nocturnal hypoglycemia. PA features included exercise
type, duration, intensity, and timing. Demographic features
were age and biological sex. Table S1 shows all input features.

Figure 2 shows prediction error versus evidential uncer-
tainty and demonstrates that uncertainty increased with
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Figure 1. Top 20 glucose features used to train the prediction algorithm ranked by their average mutual information with the target minimum nocturnal
glucose during the first half and latter half of the night. GROC, glucose rate of change; MIN, minimum CGM glucose; MAX, maximum CGM glucose;
LBGI, low blood glucose index; HBGI, high blood glucose index; TAR[180|250], percentage time above range >180 mg/dL | >250 mg/dL. Features above

are defined in Table S1.
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Figure 2. Association between prediction RMSE and evidential
uncertainty for the training (blue) and the testing (black) datasets. Median
(bold line) and interquartile range of uncertainty measure (shadow area)
are shown. RMSE, root-mean-square error.

increased error in the estimation of the minimum nocturnal
glucose as expected.

The ENN predicts the probability of hypoglycemia during
the 0-4 h and the 4-8 h after bedtime. Figure 3A shows that
the algorithm forecasted a higher likelihood of hypoglycemia
during the latter half of the night compared with the first part
of the night (P <.001). Higher likelihood of hypoglycemia
was also forecasted on physically active days (ie, days with
labeled exercise events) compared with sedentary days
(P<.001) as presented in Figure 3B. There was 46.2% and
41.7% higher predicted probability of nocturnal hypoglyce-
mia following physically active days relative to sedentary days

in the training and testing data, respectively. Because of these
differences, different thresholds were applied for predicting
nocturnal hypoglycemia during the first half versus the latter
half of the night, and for active versus sedentary days. The

threshold is p(TSH1 ) = 0.112 for nocturnal hypoglycemia predic-

tion during the first half of the night and p.<1-SH2 ) = 0.167 for
nocturnal hypoglycemia prediction during the latter half of
the night on sedentary days. Similarly, for active days, the

threshold is p(TIL’l) = 0.159 for nocturnal hypoglycemia pre-

diction during the first half of the night and p(TIL’Z) = 0.211 for
nocturnal hypoglycemia prediction during the latter half of
the night. Customizing these thresholds through hyperpara-
meter tuning resulted in a 25% improvement in median
participant-level specificity (0.77 vs 0.52) at the expense of a
5% drop in participant-level sensitivity (0.81 vs 0.86) in pre-
dicting nocturnal hypoglycemia on active days.

To illustrate the operation of the algorithm, let us consider
that a person is going to sleep at 11:00 pMm and runs the algo-
rithm to determine whether they should take a snack before
bedtime to avoid hypoglycemia. At 11:00 pM™, a feature vector
is constructed including features derived from CGM, PA data,
and demographics. Additionally, an input variable indicating
that the model is tasked to return predictions for the first half
of the night is used. The resulting feature vector and the indi-
cator input variable are used to predict the minimum noctur-
nal glucose and the associated predicted uncertainty.
Following this prediction, the algorithm generates a probabil-
ity value p for the likelihood of the minimum nocturnal glu-
cose falling below 70 mg/dL. If PA has been recorded during
the day, an alert indicating a high likelihood of nocturnal
hypoglycemia during the first half of the night will be trig-
gered if p > p<TA}‘Il) and a bedtime snack recommendation
will be provided. If the alert is triggered for the first half
of the night, no further predictions are performed. However,
ifp < p(TI;’ID a new prediction will be initiated using the previ-
ously calculated feature vector, but with the indicator input


https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad196#supplementary-data

114 Journal of the American Medical Informatics Association, 2024, Vol. 31, No. 1

051 P < 0.001
| P <0001 |

e =
w IS
A \

<
o
N

Predicted p(MNG < 70mg/dL)

o
=
)

0.01

P < 0.001
[ P <0001 |

First (0-4 h) Latter (4-8 h)
Portion of the night (hours after bedtime)

Mean p(MNG < 70mg/dL)
A Observed

O  Predicted

Active days Sedentary days
Physical activity

Dataset

—— Training

Testing
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P<.001). Predicted probability of nocturnal hypoglycemia is higher for nights following active days (training: 0.19 vs 0.13, testing: 0.17 vs 0.12, P<.001).

MNG, minimum nocturnal glucose.

Table 2. Results of nocturnal hypoglycemia prediction methods on the hold-out testing dataset.

Nocturnal hypoglycemia time frame Performance metric Models
Elastic Support Extreme Proposed
net vector gradient evidential
regression boosting neural
(SVR) (XGBOOST) network
First half of the night 0-4 h after bedtime AUROC 0.74 0.77 0.75 0.80
Sensitivity 0.61 0.61 0.61 0.67
Specificity 0.75 0.79 0.77 0.77
AUPRC (chance level = 0.09) 0.32 0.38 0.32 0.43
Latter half of the night 4-8 h after bedtime AUROC 0.64 0.67 0.64 0.71
Sensitivity 0.51 0.52 0.51 0.58
Specificity 0.69 0.73 0.67 0.72
AUPRC (chance level = 0.09) 0.17 0.20 0.18 0.22
Nocturnal hypoglycemia regardless of event timing Sensitivity 0.65 0.63 0.62 0.68
Specificity 0.71 0.75 0.69 0.74

The best performance for each metric is highlighted in bold.

variable set such that the model returns predictions for the
second half of the night. If the probability of nocturnal hypo-
glycemia p > p(TAF"{z), an alert for high likelihood of nocturnal
hypoglycemia during the second half of the night is triggered
and a bedtime snack recommendation will be provided. But if
p < p(TAkf), the risk of nocturnal hypoglycemia is considered
to be low enough to not trigger an alert. This same process is

applied for sedentary days using corresponding probability

thresholds p(TSH1 ) and p(TSH2 ),

Table 2 shows the higher performance of the proposed
ENN algorithm when compared with Elastic Net,>! Support
Vector Regression,>” and XGBOOST,*” based on predictions
made on the testing dataset which included the actual noctur-
nal glucose measurements that were used as ground truth. We
chose comparator models such that various machine learning

algorithms of different levels of complexity were evaluated,
and we included the SVR model as the family of Support Vec-
tor Machine methods has been used in the past for predicting
nocturnal hypoglycemia with promising results.'®!7:1%:2%:23
For a more objective comparative assessment of the accuracy
of the prediction methods, the ENN and all comparator mod-
els were trained and tested on the same datasets described
herein in the Methods/Datasets section.

The impact of the Smart Snack intervention in silico
(mean*SD) is presented in Table 3. The statistical signifi-
cance of the differences in glucose control outcomes was
assessed using the Wilcoxon signed-rank test. ENN predic-
tions in conjunction with the Smart Snack intervention
resulted in 41% lower probability of nocturnal hypoglycemia
relative to the no intervention baseline (14.0% vs 23.9%).
Moreover, the ENN-based Smart Snack intervention
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Table 3. Evaluation of the Smart Snack intervention in silico.

Probability % Time-in-hypoglycemia % Time-in-range % Time-in-hyperglycemia
of nocturnal (<70 mg/dL) Mean+SD (70-180 mg/dL) Mean=SD (>180 mg/dL) Mean=SD
hypoglycemia
Study arm (<70 mg/dL) Nighttime 24h Nighttime 24h Nighttime 24h
No intervention 23.9*+141% 74x7.0% 3.6*x23% 60.109.7% 54.8+10.0% 32.5*+11.8% 41.6 =10.3%
Evidential neural network+ 14.0 £13.3%* 2.4%3.3%* 1.8=1.2% 60.7=11.1%" 54.4+9.8%" 36.9+12.3%™" 43.8+10.3%™"
Smart Snack
Oracle+Smart Snack 13.5£103% 2.8+x3.5% 22*x19% 65.1x11.1% 56.1*9.5% 322*+12.5% 41.6 £10.7%

Statistical significance indicates P-value <.05 as evaluated by Wilcoxon signed-rank test.

@ Statistically significant with respect to control arm.
b Statistically significant with respect to Oracle Smart Snack.

significantly reduced %time-in-hypoglycemia as compared to
no intervention, both in the overnight period (2.4% vs 7.4%)
and during the 24 h following bedtime (1.8% vs 1.2%), with
no change in %time-in-range. Using the Oracle forecasting
method to recommend carbohydrates based on absolute
knowledge of future nocturnal hypoglycemia resulted in com-
parable %time-in-hypoglycemia of 2.8%, and higher %time-
in-range during the overnight period and the 24 h following
bedtime given that the Oracle forecasting method does not
produce Type I errors possibly leading to hyperglycemia.

Discussion

We demonstrate the performance of a proposed ENN frame-
work and explore the clinical impact of utilizing this algo-
rithm with a Smart Snack approach to recommend
carbohydrates before bed, after both sedentary days and
physically active days, if indicated. The ENN algorithm per-
forms better than baseline methods in terms of AUROC and
sensitivity in predicting nocturnal hypoglycemia. The SVR
model achieved the highest specificity (1%-2% higher than
the specificity of the ENN). However, comparator models
lack the capability to estimate predictive uncertainty. The pro-
posed algorithm provides uncertainty assessments that are
well correlated with the prediction error (Figure 2), enabling
the identification of scenarios where model predictions might
be inaccurate. For instance, the uncertainty of the ENN pre-
dictions is optimized to be higher in scenarios when the model
is applied to individuals with features (eg, demographic or
glucose dynamics features) that significantly differ from those
individuals whose data were used for model development.

The existing literature describes alternative approaches for
estimating prediction uncertainties in neural networks using
Bayesian techniques, such as mean—variance estimation,*'
Monte Carlo dropout,”* and ensemble methods.*> These
methods generate prediction distributions by introducing
noise to the model inputs, randomly dropping out a propor-
tion of the neurons in a neural network or building ensembles
of models with diverse parameters. However, the framework
of evidential learning adopted in this study is different from
these Bayesian strategies. Instead of placing a prior distribu-
tion on model inputs or parameters, it directly places a prior
distribution on the likelihood function of the target variable,
allowing a more flexible representation of uncertainty, as the
likelihood function can capture both epistemic and aleatoric
uncertainty.>*

Our results suggest that the ENN algorithm might help
avoid 68% of nocturnal hypoglycemic events, with a

specificity of 74% (ie, 1.8 false positives per week). As
expected, the accuracy of the algorithm is lower in predicting
hypoglycemia that occurs in the latter half of the night
(Table 2).

The prediction algorithm was equally effective in predicting
nocturnal risk after both sedentary and physically active days.
It is also worth noting that physically active days appeared to
significantly increase the predicted risk for nocturnal hypogly-
cemia, which is consistent with other in clinical data observa-
tions for youth living with T1D who did or did not perform
afternoon exercise.**

In our previous work on nocturnal hypoglycemia predic-
tion,'” we described an SVR algorithm that was trained and
validated using data collected from people with T1D on
sensor-augmented pump therapy (SVRpunmp). We tested the
SVRpymp on the MDI testing dataset. SVRpypmp achieved sen-
sitivity and specificity of 0.65 and 0.64 in predicting noctur-
nal hypoglycemia, respectively. The optimal glucose features
found on data from pump users are comparable to MDI
users. However, the SVR model trained with MDI (SVR yvpi)
data and additional PA features yielded an overall sensitivity
of 0.63 and a specificity of 0.75, which was worse than the
ENN (Table 2). Although there was a slight decrease in sensi-
tivity for the SVRypy, the additional features and the training
data resulted in an 11% improvement in specificity, compared
with the SVRpypmp. This demonstrates the importance of
training the model on MDI data if the algorithm is to be used
by people on MDI therapy.

We further explored the impact of utilizing our algorithm
and Smart Snack in an in silico clinical trial. We demonstrate
that consuming a Smart Snack in response to the ENN predic-
tions reduced both nocturnal hypoglycemia and hypoglyce-
mia the following day; and this reduction was comparable to
that of the Oracle method, which had full knowledge of noc-
turnal hypoglycemia prior to bedtime. These findings lend
support for use of the ENN as an effective decision support
tool to help people living with T1D avoid overnight
hypoglycemia.

In the context of a real-world clinical application, the
prediction-based recommendation system presented here can
be integrated into a mobile health app for MDI users.** This
integration involves automated processing of an individual’s
glucose measurements from a CGM sensor and PA data from
a smartwatch or fitness tracker paired with the smartphone
running a decision support app. The core functionality of the
module for prevention of overnight low glucose encompasses
preemptive alerts and personalized bedtime Smart Snack sug-
gestions. These recommendations are triggered when there is
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Figure 4. lllustration of a clinical application of the evidential regression-based decision support tool integrated into a mobile health app to predict probability
of nocturnal hypoglycemia and provide bedtime snacks to help reduce exposure to overnight low glucose. Icons sourced from www.flaticon.com.

a heightened predicted probability of a nocturnal hypoglyce-
mia event (refer to Figure 4 for an illustrative overview of the
tool’s functionality). The effectiveness of the proposed Smart
Snack intervention in reducing nocturnal hypoglycemia for
individuals with T1D using MDI therapy warrants further
evaluation in clinical studies.

The prediction modeling work presented here has limita-
tions that should be acknowledged. One limitation is that
nocturnal period (ie, bedtime) was not standardized and our
assessment of participants’ bedtime may be inaccurate
because the Glooko dataset did not include bedtime logs nor
sleep information from its users. We therefore leveraged sleep
information present in the TIDEXI Study data, as estimated
from wearable data, to define a distribution of bedtimes that
was used to generate training and testing examples.

Another limitation of this analysis arises from the definition
of physically active days, which relied on participants’ self-
reported activity levels rather than activity captured by body-
worn heart rate sensors and accelerometry. Thus, there is a
potential for days featuring undisclosed (ie, incidental, not
logged) PA to be inaccurately categorized as sedentary.

Conclusion

We leveraged advances in evidential machine learning to
develop a model capable of predicting the probability and
timing of nocturnal hypoglycemia. Information on risk and
timing are key for making informed decisions regarding pro-
active measures to avoid nocturnal hypoglycemia.

The evidential learning approach applied in this study pro-
vides an estimation of predictive uncertainty, enabling identi-
fication of scenarios where the model is likely to fail; and
therefore, improving the models’ robustness and reliability.

This system, in conjunction with our provider-informed
Smart Snack algorithm, significantly reduced hypoglycemia
overnight and in the following day in an iz silico trial.
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