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The Pervasive Problem of Missing Data

Missing data is a universal challenge in almost every field.
From medical records where a patient's vital signs weren't
recorded, to financial data with gaps in transaction history,
incomplete datasets can severely hinder analysis and

decision-making.

Why does it matter?

e It compromises the quality of machine learning models.

e It can lead to biased or incorrect conclusions.

e Valuable information is lost, reducing the power of the
dataset.
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Understanding the "'Why' Behind Missing Data

Not all missing data is the same. The mechanism causing the data to be missing is crucial.

Missing Completely at
Random (MCAR)

The missingness is purely random
and doesn't depend on any other
data, observed or unobserved. Think
of a survey where a few random

pages were lost.

Missing at Random (MAR)

The missingness depends on the
observed data, but not the missing
data itself. For example, men might
be less likely to fill out a depression
survey, so missingness depends on
the 'gender’ variable.

GAIN assumes the Missing Completely at Random (MCAR) property.

Missing Not at Random
(MNAR)

The missingness depends on the
unobserved data itself. For instance,
people with very high incomes might
be less likely to disclose their
income. This is the hardest case to
handle.



Introducing GAIN: A New
Paradigm

Generative Adversarial Imputation Nets (GAIN) adapts the powerful Generative
Adversarial Net (GAN) framework specifically for the task of imputing missing data.
It doesn't just fill in the blanks; it learns the underlying data distribution to generate

realistic and plausible values.

The Generator (G)

Observes the known data and tries to generate realistic
imputations for the missing parts, creating a 'completed’ data

vector.

The Discriminator (D)

Examines the completed vector and tries to determine which
parts were originally observed and which were 'faked' by the

generator.
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GAN vs GAIN

Generator . Discriminator
Synthetic data

G G(z) True/Fake

Z X

Random noise True data

Fig. 1. General structure of a Generative Adversarial Network, where
the generator G takes a noise vector z as input and output a synthetic
sample (G(z), and the discriminator takes both the synthetic input G(z)
and true sample x as inputs and predict whether they are real or fake.

Huang, H., Yu, P. S., & Wang, C. (2018). An introduction to image synthesis with generative
adversarial nets. arXiv preprint arXiv:1803.04469
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The GAIN Algorithm: Training Process

The training involves a two-step iterative process, optimizing the Discriminator and Generator in turn.

Step 1: Optimize the Discriminator (D) Step 2: Optimize the Generator (G)
With a fixed Generator, D is trained to get better at With a fixed Discriminator, G is trained on a dual-
predicting the mask vector (distinguishing real vs. objective: 1) Fool the Discriminator on imputed values

imputed). This is a standard classification task. (adversarial loss), and 2) Accurately reconstruct the

observed values (reconstruction loss).

3.2. Discriminator

As in the GAN framework, we introduce a discriminator, D,
that will be used as an adversary to train G. However, unlike
in a standard GAN where the output of the generator is either
completely real or completely fake, in this setting the output
is comprised of some components that are real and some
that are fake. Rather than identifying that an entire vector
is real or fake, the discriminator attempts to distinguish
which components are real (observed) or fake (imputed) -
this amounts to predicting the mask vector, m. Note that
the mask vector M is pre-determined by the dataset.

Formally, the discriminator is a function D : X — [0,1]¢
with the -th component of D(x) corresponding to the prob-
ability that the i-th component of x was observed.



Experiments

Setup

e Multiple real-world UCI datasets were used (Breast, Spam, Letter, Credit, News).
e Missingness was introduced by randomly removing 20% of data points (MCAR).

e Performance was compared against 5 state-of-the-art imputation methods (MICE, MissForest, Matrix Completion, Auto-
encoder, EM).

e Each experiment was run 10 times with 5-fold cross-validation for robustness.



Source of Gains: Why Does GAIN Work?

Ablation studies show that every component of the GAIN architecture contributes to its superior performance. Removing any part

degrades the results.

Table 1 is a form of ablation studies. Table 2 is comparison with benchmarks.

GAIN: Missing Data Imputation using Generative Adversarial Nets

Table 1. Source of gains in GAIN algorithm (Mean = Std of RMSE (Gain (%)))

‘ Algorithm H Breast ‘ Spam ‘ Letter ‘ Credit News ‘
| GAIN || .0546 £.0006 | .0513+.0016 | .1198+.0005 | 1858 £.0010 | .1441 0007 |
GAIN w/o || .0701 £.0021 | .0676 + .0029 | .1344 £ .0012 | .2436 +.0012 | .1612 + .0024
Le (22.1%) (24.1%) (10.9%) (23.7%) (10.6%)
GAIN w/o || 0767 +.0015 | .0672 +.0036 | .1586 +.0024 | .2533 +.0048 | .2522 + .0042
L (28.9%) (23.7%) (24.4%) (26.7%) (42.9%)
GAIN w/o || .0639 +.0018 | .0582 +.0008 | .1249 +.0011 | .2173 +£.0052 | .1521 £ .0008
Hint (14.6%) (11.9%) 4.1%) (14.5%) (5.3%)
GAIN w/o || .0782 £.0016 | .0700 +.0064 | .1671 +.0052 | .2789 +.0071 | .2527 & .0052

Hint & L, (30.1%) (26.7%) (28.3%) (33.4%) (43.0%)
Conclusion: Full GAIN works better than GAIN with some parts turned off.



Head-to-Head: Imputation Performance

(RMSE)

GAIN: Missing Data Imputation using Generative Adversarial Nets

Table 2. Imputation performance in terms of RMSE (Average + Std of RMSE)

’ Algorithm H Breast Spam Letter Credit News ’
Compared to leading methods, \ GAIN H 0546 + .0006 \ 0513+ .0016 \ 1198 .0005 \ 1858 +.0010 | 1441 + .0007 \
GAIN consistently achieves
y MICE 0646 4+ .0028 | .0699 + .0010 | .1537 +.0006 | 2585 +.0011 | .1763 + .0007
lower Root Mean Square Error MissForest || .0608 +.0013 | .0553 + .0013 | .1605 4 .0004 | .1976 +.0015 | .1623 + 0.012
(RMSE), indicating more Matrix 0946 4+ .0020 | .0542 + .0006 | .1442 + .0006 | 2602 + .0073 | .2282 + .0005
accurate imputations. Lower is Auto-encoder || .0697 +.0018 | .0670 &+ .0030 | .1351 £ .0009 | .2388 £+.0005 | .1667 + .0014
better EM 0634 4+ .0021 | .0712 + .0012 | .1563 + .0012 | 2604 + .0015 | .1912 + .0011
0.34 0.3 + GAIN 04
032 P 0.28 =—&—MissForest 05|
0.3 Autoencoder ) G\\
L 02 " 026 ] L 03 n
2 026 2L 024 2 -
= 024 o 02 o025t \
022 02 02f M—%
0.2 i
0.18 0.18 r 0.15
0 20 40 60 80 0 1 2 3 4 0 5 10 15 20 25

(a) Missing Rate (%) (b) The number of samples  x10* (c) The number of feature dimensions

Figure 2. RMSE performance in different settings: (a) Various missing rates, (b) Various number of samples, (c) Various feature dimensions
All the experiments in the Figure 2 are on the Credit dataset.



Prediction Performance

Table 3. Prediction performance comparison

‘ Algorithm

AUROC (Average + Std)

‘ Breast Spam Credit News ‘

| GAIN \ .9930 +.0073 \ .9529 +.0023 \ 7527 + .0031 \ 9711 + .0027 \
MICE 9914 + 0034 | 9495 + .0031 | 7427 +.0026 | 9451 + .0037
MissForest | .9860 & 0112 | .9520 & .0061 | 7498 + .0047 | .9597 + 0043
Matrix 9897 + 0042 | .8639 +.0055 | 7059 +.0150 | .8578 + .0125
Auto-encoder | 9916 + 0059 | .9403 + .0051 | 7485 + .0031 | .9321 + .0058
EM 9899 + 0147 | .9217 +.0093 | 7390 +.0079 | .8987 + .0157
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Figure 3. The AUROC performance with various missing rates
with Credit dataset



Congeniality: Respecting the Data's Story

A good imputation model should be 'congenial’ - it should impute values that respect the original relationships between features
and labels. Authors measure this by comparing the parameters of a model trained on the original complete data vs. one trained on

imputed data. Lower error is better.

6.5. Congeniality of GAIN

The congeniality of an imputation model is its ability to im-
pute values that respect the feature-label relationship (Meng,
1994; Burgess et al., 2013; Deng et al., 2016). The conge-
niality of an imputation model can be evaluated by measur-
ing the effects on the feature-label relationships after the
imputation. We compare the logistic regression parameters,
w, learned from the complete Credit dataset with the param-
eters, w, learned from an incomplete Credit dataset by first
imputing and then performing logistic regression.

We report the mean and standard deviation of both the mean
bias (||w — w||1) and the mean square error (||w — W||2)
for each method in Table 4. These quantities being lower
indicates that the imputation algorithm better respects the

relationship between feature and label. As can be seen in
the table, GAIN achieves significantly lower mean bias and
mean square error than other state-of-the-art imputation al-
gorithms (from 8.9% to 79.2% performance improvements).

GAIN achieves the lowest error, showing it does the best job of preserving the underlying feature-label

relationships.

Table 4. Congeniality of imputation models

. Mean Bias MSE
Algorithm K R
([[w —wll1) (Ifw —wl|2)
GAIN 0.3163+ 0.0887 | 0.5078+ 0.1137
MICE 0.8315 +£0.2293 | 0.9467 + 0.2083
MissForest | 0.6730 £0.1937 | 0.7081 4+ 0.1625
Matrix 1.5321 £ 0.0017 | 1.6660 £ 0.0015

Auto-encoder
EM

0.3500 £ 0.1503
0.8418 + 0.2675

0.5608 +0.1697
0.9369 + 0.2296




Conclusion & Future Impact

Key Takeaways

e GAIN is a then novel, generative model for missing data imputation that outperforms the state-of-the-art methods of its time.

e Its adversarial architecture, guided by a unique hint mechanism, allows it to learn the true data distribution.

e GAIN's superior imputations lead to better performance in downstream prediction tasks, especially at high missing rates.

e It is highly congenial when compared to the SOTA models of its time, preserving the original structure of the data.



Thank You!
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