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A B S T R A C T   

The standard way to train neural-network-based solutions in healthcare does not consider clinical 
criteria, leading to models that are not necessarily clinically acceptable. In this study, we look at 
this problem from the perspective of the forecasting of future glucose values of people with 
diabetes. We propose a new training methodology that achieves the best possible tradeoff be-
tween accuracy and medical requirements set by health authorities. Starting from a solution 
maximizing the prediction accuracy, we progressively relax the accuracy constraints to focus 
more on the medical ones. This is achieved by considering a new loss function specifically 
designed for glucose prediction. We evaluate the proposed approach on both people with type-1 
and type-2 diabetes. We show that it improves the clinical acceptability of the predictions. 
Moreover, for given clinical criteria, we are able to find the optimal solution that maximizes the 
accuracy while at the same time meeting clinical the criteria.   

1. Introduction 

With 4.2 million of imputed deaths in 2019, diabetes is undoubtedly one of the major diseases of our modern world (Federation, 
2019). There are three main categories of diabetes: type-1 diabetes mellitus, type-2 diabetes mellitus and gestational diabetes. 
Compared to healthy persons, people with diabetes experience trouble in the regulation of their blood glucose level within an 
acceptable range (homeostasis around 90 mg/dL). The pancreas is responsible for most of the regulation in healthy individuals, 
releasing two different hormones: the insulin and the glucagon (see Fig. 1). However, for people with diabetes, this negative feedback 
loop is damaged. In type-1 diabetes, the pancreas does not secrete insulin anymore. On the other hand, in type-2 diabetes, the body 
cells get increasingly resistant to the action of insulin causing the pancreas to not be able to produce enough insulin. People with 
diabetes can still achieve the regulation of blood glucose through the use of medication and the careful monitoring of several aspects of 
their life such as the food they eat or their physical activity. However, this task is very difficult and can lead to severe consequences if 
not done correctly. Failing to regulate the blood glucose level puts the person with diabetes at risk of getting in states of hypoglycemia 
and hyperglycemia. In hypoglycemia (blood glucose level below 70 mg/dL), the person faces short-term consequences such as 
clumsiness, trouble talking, loss of consciousness or even death depending on the severity of the hypoglycemia. On the other hand, 
with hyperglycemia (blood glucose level above 180 mg/dL), the consequences are more long-term with an increased risk of cardio-
vascular diseases, amputation because of poor blood flow, or blindness. 
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In the recent years, a lot of researchers have been interested in the creation of glucose predictive models (Oviedo et al., 2017). Using 
past glucose values, carbohydrate (CHO) intakes and insulin infusions information, the models can forecast the future glucose values 
30–60 min ahead of time (Oviedo et al., 2017). For people with diabetes, being able to know the future values of their glycemia could 
be highly beneficial as hypo/hyperglycemia events could be anticipated. Historically, glucose predictive models were based on 
autoregressive processes (Saiti et al., 2020; Sparacino et al., 2007). However, thanks to the advance in machine learning, but also to the 
increased availability of data, we are currently witnessing a shift in favor of more complex models, and in particular models based on 
artificial neural networks. The use of standard feedforward neural networks has been explored with, for instance, the works of Pappada 
et al. (2011), Georga et al. (2013) and Ali et al. (2018). Recurrent neural networks, and in particular those based on long short-term 
memory (LSTM) units, are probably the most popular deep models for glucose prediction. Aliberti et al. (2019) showed that they 
are more accurate than standard autoregressive models. Mirshekarian et al. (2017) demonstrated their superiority over support vector 
regression (SVR) models that use expert physiological features. Moreover, they have also been shown to benefit from the addition of 
various input features such as the heart rate or the skin conductance (Martinsson et al., 2019; Mirshekarian et al., 2019). Lastly, other 
neural-network-based solutions have been recently tried out. Among them, we can highlight the promising use of convolutional neural 
networks (De Bois et al., 2020b; Zhu et al., 2018). 

Models based on neural networks are trained by backpropagating the gradient of the average error to the weights of the network. In 
glucose prediction, as in almost all regression problems, the average error is computed as the mean squared error (MSE). As a 
consequence, the models are trained to maximize the accuracy of the predictions. However, in the benchmark study we recently 
conducted (De Bois et al., 2020a), we showed that a good statistical accuracy does not ensure that the predictions are clinically 
acceptable. Indeed, some errors, despite their relatively low magnitude, can be very dangerous for the person with diabetes (e.g., errors 
in the hypoglycemia region). To address this issue, Del Favero et al. proposed the glucose mean-squared error (gMSE) loss function that 
amplifies the weighting of the errors based on the observed glycemic region (Del Favero et al., 2012). They showed that using the gMSE 
instead of the standard MSE decreases the number of dangerous predictions at the cost of reducing the average statistical accuracy of 
the model. While their methodology is promising, their study has several limitations that we aim at addressing. First, as the approach 
has been evaluated on virtual people with diabetes using autoregressive models, it is unclear how it translates to more complex models 
and to real people. Also, their approach focuses on only one aspect of the clinical acceptability of the predictions, which is the point 
clinical accuracy. Another aspect of the clinical acceptability of the predictions is the clinical accuracy of predicted variations (i.e., the 
difference between two successive predictions compared to the observed variations), which is taken into account in the widely used 
continuous glucose-error grid analysis (CG-EGA) metric (Kovatchev et al., 2004). Indeed, inaccurate predicted glucose variations can be 
very dangerous as they can confuse the person with diabetes in the understanding of the future evolution of his/her glycemia. 

Our contributions are:  

1. We propose the coherent mean squared glycemic error (gcMSE) loss function. Compared to the standard MSE loss function, it includes 
constraints directly related to the clinical acceptability of the predictions. In particular, it penalizes the model during its training 
not only on prediction errors, but also on predicted variations errors (De Bois, Ammi, & El Yacoubi, 2019,b). Moreover, it makes 
possible to increase the importance of specific regions in the error space (e.g., the hypoglycemia region).  

2. Optimizing the parameters of the gcMSE loss function is a multi-objective optimization problem. Indeed, by incentivizing the model 
to focus more making clinically acceptable predictions, we reduce the statistical accuracy constraints. However, for the model to be 
useful for the people with diabetes, the predictions need to be accurate. To address this challenge, we propose the PICA (progressive 
improvement of the clinical acceptability) algorithm that iteratively relaxes the accuracy constraints so that the focus of the learning is 
progressively more in favor on the satisfaction of the clinical constraints. This enables the creation of a model that maximizes the 
accuracy while at the same time that satisfying the given clinical constraints. 

Fig. 1. Blood glucose level negative feedback loop.  
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3. We evaluate the proposed solutions on two diabetes datasets, the IDIAB dataset and the OhioT1DM dataset, characterized by their 
heterogeneity. Whereas the IDIAB dataset, collected by ourselves, is made of 6 individuals with type-2 diabetes, the OhioT1DM 
dataset has been released by Marling et al. and comprises data from 6 individuals with type-1 diabetes (Marling & Bunescu, 2018).  

4. We have open-sourced the code written in Python that has been used in this study in a GitHub repository (De Bois, 2020). 

The paper is organized as follows. First, after introducing the CG-EGA metric in more details, we present the whole framework of 
integrating clinical acceptability criteria within the training of deep models. Then, we describe the machine learning pipeline, with the 
preprocessing of the data, the models we used, and the evaluation process. Finally, before concluding, we present and discuss the 
experimental results. 

2. Integrating clinical criteria into the training of deep models 

In this section we propose a method to integrate clinical criteria based on the CG-EGA into the training of deep models. First, we 
introduce the CG-EGA metric, how it is computed and used to assess the clinical acceptability of the predictions. Then, we present the 
gcMSE loss function that integrates the clinical constraints. Finally, we propose a methodology to use this new loss function in practice. 

2.1. Presentation of the CG-EGA 

Originally proposed by Kovatchev et al. for the evaluation of the clinical acceptability of blood glucose sensors (Kovatchev et al., 
2004), the continuous glucose-error grid analysis (CG-EGA) is a widely used metric to assess the clinical acceptability of glucose pre-
dictive models (Georga et al., 2016; Li et al., 2018; Yu et al., 2018; Zarkogianni et al., 2015). It is made of the combination of two 
different evaluation grids: the point-error grid analysis (P-EGA) and the rate-error grid analysis (R-EGA). While the P-EGA measures the 
clinical accuracy of the predictions, the R-EGA measures the clinical accuracy of the predicted variations. The predicted variations are 
computed as the rate of change between two consecutive predictions. Both grids attribute a score from A (best) to E (worst) to a given 
prediction, evaluating the dangerousness of the prediction. Fig. 2 gives a graphical representation of the P-EGA and the R-EGA. The 
scores in both grids are then combined into a final label assessing the clinical acceptability of the prediction. A prediction can either be 
an accurate prediction (AP), a benign error (BE), or an erroneous prediction (EP). 

Table 1 details the reasoning behind the CG-EGA scores. First, the CG-EGA has a different behavior depending on the glycemic 
region (hypoglycemia, euglycemia, or hyperglycemia) the person with diabetes is in. Essentially, the glycemic region impacts the way 
bad R-EGA scores (C to E) are accounted. Bad R-EGA regions are split into upper and lower regions (e.g., uE and lE) to have more 
flexibility in the assessment of the final CG-EGA score. For instance, in the hypoglycemia region, a lE score in the R-EGA, representing a 
fast predicted decrease in glycemia while a fast increase is observed, can lead to a benign error (BE) if the last prediction is accurate (A 
in the P-EGA). In the hypoglycemia region, the CG-EGA states that it is not dangerous for the patient to predict a decrease in glycemia 
as it will not lead to life-threatening actions from the user. On the other hand, the absence of detection of negative variations in the uD 
and uE zones is extremely dangerous: the hypoglycemia is becoming much worse, which could result in consequences such as coma or 
even death. Overall, for a prediction to be labeled as an accurate prediction (AP), it needs good scores (A or B) in both the P-EGA and R- 
EGA. 

In summary, compared to standard accuracy metrics such as the root mean squared error (RMSE), the CG-EGA also evaluates the 
accuracy of the predicted variations. And, most importantly, the evaluation depends on the observed glycemic region. These aspects 
should be taken into account if we want to add clinical constraints based on the CG-EGA into the training of the models. 

Fig. 2. Example of the CG-EGA classification with the P-EGA (left) and R-EGA (right).  
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Table 1 
Classification of glucose predictions performed by the CG-EGA. Depending on the scores obtained on the P-EGA and R-EGA, a prediction is classified as an accurate 
prediction (AP), a benign error (BE) or erroneous prediction (EP). 
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2.2. Coherent mean squared error 

In deep learning, the models are trained by backpropagating the gradient of the loss function to the weights of the artificial neural 
network. By modifying the objective function, it is possible to modify the predictive behavior of the model. We can find numerous loss 
functions in the literature, the most used being the cross-entropy for classification problems and the mean squared error (MSE) for 
regression problems. Since the task of glucose prediction is a regression task, deep models in the field use the MSE in their training. 
Equation (1) describes the MSE as the squared difference between the observed g and predicted ĝ glucose values, averaged over N 
samples. In this study, we propose modifications to the MSE loss function to improve the clinical acceptability of the predictions. 

MSE(g, ĝ)=
1
N

∑N

n=1

(

gn − ĝn

)2

(1) 

First, as shown by the analysis of the CG-EGA, it is essential to penalize predicted variation errors in addition to prediction errors. 
To do this, we can use the coherent mean squared error (cMSE) loss function, previously proposed in a work from our team (De Bois, 
Ammi, & El Yacoubi, 2019,b). The cMSE is the MSE of the predictions weighted by the MSE of the predicted variations. Equation (2) 
describes the cMSE loss function with Δg and Δĝ representing, respectively, the observed and predicted glucose variations. We call the 
weighting coefficient c the coherence factor. It represents the relative importance we give to the accuracy of the predicted variations 
compared to the accuracy of the predictions. 

cMSE(g, ĝ)=MSE(g, ĝ)+ c ⋅ MSE(Δg, Δĝ)=
1
N

∑N

n=1

(

gn − ĝn

)2

+ c ⋅
(

Δgn − Δĝn

)2

(2) 

To use the cMSE in the training process, we can use a recurrent neural network (e.g., LSTM) with two outputs (see Fig. 3). The two 
outputs represent the prediction at the given prediction horizon PH and the prediction at PH − ΔT, ΔT being the time interval be-
tween two predictions. For instance, with a prediction interval of 5 min and a prediction horizon of 30 min, the network outputs the 
predictions at the horizons 30 and 25 min. These two outputs enable the computation of the predicted variations, as depicted by 
Equation (3). The architecture of recurrent neural networks is particularly suited to this task as it naturally computes the prediction of 
the previous time-step (see Fig. 3). 

Δĝt+PH =
ĝt+PH − ĝt+PH− ΔT

ΔT
(3)  

2.3. Coherent mean squared glycemic error 

The analysis of the CG-EGA showed us that the magnitude of the glucose prediction and predicted variation errors are not fully 
correlated with clinical errors. Moreover, even though clinical errors are generally of high magnitude, they are quite rare in practice, 
thus representing only a small portion of the gradient in the updating of the network’s weights during its training. Therefore, mini-
mizing the MSE (or, equivalently, the cMSE) does not directly reduce the number of clinical errors. Indeed, most of the weights’ 
updates are focused on the improvement of the accuracy of predictions that already have a good clinical acceptability. In the field of 
multi-class classification, it is very common to weight samples from under-represented classes by artificially increasing their presence 
within the training set. In their work on object recognition within images, Lin et al. proposed to dynamically weight the learning 
samples according to their difficulty (a sample being considered easy when the probability of the corresponding class is very high, 
showing a high degree of confidence of the model in the prediction) (Lin et al., 2017, pp. 2980–2988). By reducing the weights of easy 
samples, the training of the model focuses on the samples for which it has the most difficulty. Finally, Del Favero et al. proposed, in the 
context of glucose prediction, to modify the MSE to better account for the dangerous regions of the P-EGA (Del Favero et al., 2012). In 
particular, they proposed that samples with observed hypoglycemia or hyperglycemia are given a higher weighting. Although their 

Fig. 3. General architecture of a two-output recurrent neural network that has been unrolled H times, where H is the length of the history of input 
data to the model. Xt are the input data to the model at time t (e.g., glucose, insulin, and carbohydrates at time t), and ŷt+PH is the model prediction 
(e.g., blood glucose prediction) at t + PH, where PH is the prediction horizon. 
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work was evaluated on autoregressive models and virtual patients, their results showed that this new loss function reduces the number 
of predictions in zone D and E of the P-EGA. 

Taking inspiration from their work, we propose to dynamically penalize prediction errors as well as predicted variation errors. This 
new loss function, named coherent mean squared glycemic error (gcMSE), penalizes predictions differently depending on the P-EGA and 
R-EGA regions (see Equation (4)). In Equation (4a), PX and px, X ∈ {A, B, uC, lC, uD, lD, uE, lE} and x ∈ {a, b, uc, lc, ud, ld, ue, le}, 
represent the P-EGA regions and their respective weights. Contrary to the original P-EGA, we have segmented the C, D and E regions in 
two, as it is already the case for the R-EGA. This gives us more flexibility in assigning the weights. Equivalently, in Equation (4b), RX 
and rx, X ∈ {A, B, uC, lC, uD, lD, uE, lE} and x ∈ {a, b, uc, lc, ud, ld, ue, le}, represent the regions of the R-EGA and their respective 
weights. 

gcMSE(g, ĝ)=P(g, ĝ) ⋅ MSE(g, ĝ)+ c ⋅ R(Δg,Δĝ) ⋅ MSE(Δg, Δĝ) (4)  

with, 

P(g, ĝ)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pa, if {g, ĝ} ∈ PA
pb, if {g, ĝ} ∈ PB
puc, if {g, ĝ} ∈ PuC
plc, if {g, ĝ} ∈ PlC
pud , if {g, ĝ} ∈ PuD
pld , if {g, ĝ} ∈ PlD
pue, if {g, ĝ} ∈ PuE
ple, if {g, ĝ} ∈ PlE

(4a)  

and, 

R(Δg, Δĝ)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ra, if {Δg, Δĝ} ∈ RA
rb, if {Δg, Δĝ} ∈ RB
ruc, if {Δg, Δĝ} ∈ RuC
rlc, if {Δg, Δĝ} ∈ RlC
rud, if {Δg, Δĝ} ∈ RuD
rld, if {Δg, Δĝ} ∈ RlD
rue, if {Δg, Δĝ} ∈ RuE
rle, if {Δg, Δĝ} ∈ RlE

(4b) 

Using the gcMSE instead of the standard MSE introduces 14 new hyperparameters to be optimized: the coherence factor c, and the 
weights associated with the P-EGA and R-EGA regions. This task being particularly laborious, we propose simplifications reducing the 
number of hyperparameters:  

• First, it is not interesting to improve the accuracy of the predicted variations in zones A and B. Indeed, all predictions belonging to 
these zones are clinically sufficiently accurate. Thus, we can set ra = rb = 0.  

• From the perspective of the possible maximization of the AP rate, BE and EP predictions can be seen as equally important. This 
allows us to set most of the C, D and E zones to the same value. Moreover, the coherence factor c alone allows us to weight the 
compromise we want between the accuracy of the predictions and the accuracy of predicted variations. Thus, we can set all these 
weights to 1.  

• Only the hypoglycemic P-EGA regions D and E (PuD and PuD) require a special treatment in order to increase the importance of 
samples in the hypoglycemic region. We denote the weight associated to these areas by phypo. 

Equation (5) summarizes the design simplifications, allowing the gcMSE cost function to have only 3 hyperparameters: pab, phypo, 
and c. The choice of these hyperparameters depends on both the learning objective and the experimental conditions. The coherence 
factor c must be chosen depending on the importance of the loss function MSE(Δg,Δĝ) compared to the MSE(g, ĝ). The choice of the 
coefficient phypo must be made according to the size of the datasets. When few hypoglycemic samples are available, it is possible to give 
a value of phypo > 1. As for pab, it represents the accuracy constraint we give during the training of the model. The lower its value, the 
more its training focuses on improving its clinical acceptability at the expense of its accuracy. 

P(g, ĝ)=

⎧
⎨

⎩

pab, if {g, ĝ} ∈ {PA,PB}

phypo, if {g, ĝ} ∈ {PuD,PuE}

1, else
(5a)  

and, 

R(Δg, Δĝ)=
{

0, if {Δg, Δĝ} ∈ {RA,RB}

1, else (5b)  
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2.4. Coherent mean squared glycemic error 

In order to be able to use the gcMSE loss function, we need to formulate the general learning objective, and in particular the relative 
importance of improving the clinical acceptability. Indeed, as shown in the work of Del Favero et al. (2012), an improvement in the 
clinical acceptability is often matched by a deterioration in the statistical accuracy. Our previous work also showed that when too little 
constraints are set on the accuracy of the model, the predictions end up being of no use for the user De Bois et al. (2019a,b). 

The presence of two objectives competing against each other makes this problem a multi-objective optimization (MOO) problem. In 
the MOO field, there is often no optimal solution (a solution that is the best one for all the objectives), but a set of solutions that are said 
to be Pareto-optimal (Marler & Arora, 2004). We can define a solution that is Pareto-optimal as a solution for which there exists no other 
solution that is simultaneously better for all the objectives. The solving of a MOO problem is generally a two-step process, where the 
Pareto-optimal solutions are first identified and one of them is then selected given selection criteria. 

Algorithm 1. Progressive Improvement of the Clinical Acceptability (PICA) 

These two steps are challenging in our application context. First, while selection criteria could be formulated as clinical accept-
ability requirements, no official standards have been set by the health authorities for glucose predictive models yet. Second, finding a 
single solution is computationally expensive as it involves the full training of a neural network. It makes the identification of the set of 
Pareto-optimal solutions through a standard grid search approach not practical. While other approaches based on genetic program-
ming, often, used in the MOO field (e.g., NSGA-II, Deb et al., 2000) converge faster, they present the same issue. 

To address these challenges, we propose the progressive improvement of clinical acceptability (PICA) algorithm that leverages our 
understanding of the search space. First, we define a hypothetical selection criterion as a minimum threshold in AP or/and a maximum 
threshold in EP following the CG-EGA (e.g., minimum 95% of predictions being labeled as AP by the CG-EGA). Our optimization 
problem can then be reformulated as the maximization of the accuracy of the predictions while meeting the set clinical criteria. To 
reduce the number of solutions that need to be computed, we start from a Pareto-optimal solution maximizing the accuracy of the 
model without considering the clinical acceptability of the predictions. Other solutions are then computed by progressively relaxing 
the accuracy constraints, gradually shifting the emphasis on the clinical acceptability. By doing so, we aim at navigating the Pareto 
front, only computing solutions that are worth considering for our problem. Once the clinical criterion is met, we stop the search of 
other solutions and select the last one as the solution that maximizes the accuracy while satisfying the clinical constraints. 

Algorithm 1 gives the technical details of the steps made by PICA algorithm. The updating law of the weights pab, representing the 
constraints in the statistical accuracy, is to be chosen according to the experimental conditions. In this study, we use the law defined by 
Equation (6) (with α ∈ [0, 1] being the speed of the relaxation of the accuracy constraints). As for the MASE metric (mean absolute 
scaled error, proposed by Hyndman & Koehler, 2006, see Equation (7)), it is used as a stopping criterion when the chosen clinical 
criteria are not achievable. The algorithm stops when the MASE exceeds 1, meaning that a naïve prediction (a prediction that is equal 
to the last known observation) is more accurate than the predictions made by the model in average. Finally, we smooth the predictions 
by using an exponential smoothing technique. It is used to attenuate the important fluctuations of the predictions in the first steps of 
the algorithm. By being small, it allows a significant gain in the clinical acceptability, in return for a minimal loss of accuracy. For more 
details on the exponential smoothing of the predictions, please refer to the post-processing steps in Section 3.3. 

Algorithm 2. Standard grid search 
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pab = αi− 1 (6)  

MASE(g, ĝ,PH)=

1
N ·

∑N
n=1

⃒
⃒
⃒
⃒gn − ĝn

⃒
⃒
⃒
⃒

1
N− PH ·

∑N
n=PH |gn − gn− PH |

(7) 

To better understand what the benefits of using the PICA algorithm are, we can compare it to a standard grid search of the 
hyperparameter pab which is described by Algorithm 2. To optimize by grid search, we first need to define a search space. Here we 
characterize the search space by the step size α in a logarithmic scale and by the number of elements inside the grid. With the same 
value of α, loss functions evaluated by the PICA algorithm are guaranteed to be also evaluated by the grid search. Instead of stopping 
the search when the best pab coefficient is found, a standard grid search waits to compute all the different solutions before selecting the 
best one. Among these solutions, the solutions that satisfy the clinical constraints but have a worse accuracy than the best solution are 
not computed by the PICA algorithm, making it faster. As a consequence, the best solutions selected by both algorithms are identical. 
Moreover, each iteration (except the first one) is in itself faster using the PICA algorithm as we are finetuning the first model maxi-
mizing the accuracy, instead of fully training a new one from scratch. Finetuning a model requires much less epochs than a full 
training, and thus allows the algorithm to run even faster. 

3. Experimental methodology 

In this section, we present the whole methodology that has been followed for the evaluation of the proposed loss functions and the 
PICA algorithm. First, we present the experimental datasets and their preprocessing. Then, we provide details about the post- 
processing of the predictions and the evaluation of the models. Finally, we describe the different models with their implementation. 

We have made the code implementation of the whole study available in a GitHub repository (De Bois, 2020). 

3.1. Experimental data 

In this study, we used two datasets made of several people with diabetes: the IDIAB dataset and the OhioT1DM dataset. While the 
IDIAB has been collected by us between 2018 and 2019 after the approval by the French ethical committee (ID RCB 2018-A00312-53), 
the OhioT1DM dataset has recently been released by Marling & Bunescu (2018). 

3.1.1. IDIAB dataset (I) 
The IDIAB dataset is made of 6 individuals with type-2 diabetes (5F/1M, age 56.5 ± 9.14 years old, body mass index of 33.52 ±

4.17kg/m2). The patients had been monitored for 31.17 ± 1.86 days in free-living conditions. We collected glucose values (in mg/dL) 
by using FreeStyle Libre continuous glucose monitoring devices (Abbott Diabetes Care). As for carbohydrate (CHO) intakes (g) and 
insulin infusion values (unit), they have been manually recorded with the mySugr coaching application for diabetes. 

3.1.2. OhioT1DM dataset (O) 
The OhioT1DM dataset is made of data coming from 6 people with type-1 diabetes (4F/2M, age between 40 and 60 years old, body 

mass index not disclosed) that had been monitored for 8 weeks in free-living conditions. For more information concerning the 
experimental system, please refer to Marling & Bunescu (2018). We restrict ourselves to the glucose values, the insulin infusions, and 
the CHO intakes to remain consistent with IDIAB data. 

3.2. Preprocessing 

The preprocessing stage aims at preparing the data for their use in the training and the evaluation of the models. It is made of 
several steps depicted by Fig. 4 and described in the following paragraphs. 

3.2.1. Cleaning 
The glucose time-series from the IDIAB dataset is comprised of several erroneous values. These values are characterized by peaks 
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lasting only one sample (see Fig. 5). We decided to remove these samples from the data as keeping them would be hurtful for the 
training as well as for the evaluation of the models. Instead of removing them by hand, we used an automated methodology proposed 
in our previous work (De Bois et al., 2019a,b). A sample is flagged as erroneous if the surrounding rates of change are incoherent with 
the typical distribution of rates of change, and if they are of opposite signs. 

3.2.2. Samples creation 
The two datasets have been resampled to a sample every 5 min which is the sampling frequency of the OhioT1DM glucose signal. 

While we took the mean of the glucose signals, the CHO and insulin values have been accumulated. 
The input samples have been obtained by using a sliding window of length H of 3 h (36 samples) on the three signals. The prediction 

objective is, for each sample, the glucose value 30 min (6 samples) in the future (prediction horizon, PH, of 30 min). 

3.2.3. Recovering missing data 
Both datasets contain numerous missing values coming either from sensor or human errors. Moreover, contrary to the OhioT1DM 

dataset, the upsampling of the IDIAB glucose signal (from 15 min to 5 min) has also introduced a lot of missing values. We can 
artificially recover some of them by following this strategy for every sample:  

1. Linearly interpolate the glucose history when the missing value is surrounded by two known glucose values;  
2. Extrapolate linearly in the opposite case, usually when the missing glucose value is the most recent data;  
3. Discard samples when the ground truth yt+PH is not known to prevent training and testing on artificial data. 

3.2.4. Splitting 
The datasets are split into training, validation, and testing sets. While the testing set is used for the final evaluation of the models, 

the validation is used as a prior evaluation for the optimization of the models’ hyperparameters. 
The testing set is made of the last 10 days for the OhioT1DM dataset and of the last 5 days for the IDIAB dataset, the latter being 

around two times smaller. The remaining days have been split into training and validation sets following an 80%/20% distribution 
with 5 permutations. 

Fig. 4. Preprocessing of the data.  

Fig. 5. Glycemia of one patient from the IDIAB dataset, for which the value recorded at 13h24 is an anomaly as it is incoherent with the over-
all signal. 
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3.2.5. Feature scaling 
Finally, the samples have been standardized (zero mean and unit variance) with respect to their training set. 

3.3. Post-processing and evaluation 

The evaluation of the predictive models is done following the steps described by Fig. 6. In this study, we focus on models that are 
personalized to the patient and that predict future glucose values with a 30-min prediction horizon. Before evaluating the predictions, 
we follow two mandatory post-processing steps. We rescale and reshape the predictions to their original scale and shape (see the 
preprocessing step). Finally, an optional step is the smoothing of the predictions of the models, as it is done in the PICA algorithm. In 
the experimental results section, we will report the performance of the models with both smoothed and raw predictions. 

3.3.1. Exponential smoothing 
The PICA algorithm involves the smoothing of the predictions at each iteration. The goal of the smoothing is to reduce excessive 

fluctuations in the predicted glucose signal. These oscillations are not representative of actual glucose variations and are therefore 
dangerous for the patient. 

We chose the exponential smoothing technique rather than the moving average technique because it gives more weight to recent 
predictions. Exponential smoothing can be defined as recursive, with each value of the smoothed signal being equal to a weighting 
between the value of the original signal and the previous value of the smoothed signal (see Equation (8), where ĝ*

t represents the 
smoothed value of the glucose prediction ĝ t and β the smoothing coefficient) (Brown, 2004). 

ĝ*
t =

⎧
⎪⎨

⎪⎩

ĝ0, if t = 0
β ⋅ ĝt + (1 − β) ⋅ ĝ*

t− 1, else
(8) 

The higher β is, the stronger is the weight given to the original signal, and the less smooth the outputted signal is. The choice of the β 
smoothing coefficient in [0, 1] must be made carefully. Indeed, a too aggressive smoothing will result in a temporal shift of the signal. In 
the context of glucose prediction, this will greatly reduce the accuracy of the model, and therefore its usefulness for the patient. 

To our knowledge, although common in signal processing (e.g., power consumption prediction - Taylor & McSharry, 2007), no 
postprocessing smoothing has been done in the literature of glucose prediction. We can nevertheless note the occasional use of 
low-pass filters (which act similarly to the exponential smoothing technique) on the input signal (Pérez-Gandía et al., 2010; Sparacino 
et al., 2007). 

3.3.2. Metrics 
To evaluate the models, we use four different metrics: the root mean-squared error (RMSE), the mean absolute percentage error 

(MAPE), the mean absolute scaled error (MASE) and the CG-EGA. For each metric, the performance is averaged over the 5 test subsets 
of each patient linked to a 5-fold cross-validation on the training/validation permutations. They are then also averaged on all the 
patients from the same dataset. The RMSE, MAPE and MASE metrics give a complementary measure of the accuracy of the prediction. 
While the RMSE is closely related to the prediction scale, the MAPE is scale independent and is expressed in percentage. As for the 

Fig. 6. Post-processing and evaluation of the predictions.  
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MASE, it measures the average usefulness of the predictions compared to naïve predictions (predictions equal to the last known ob-
servations). The MASE is computed following Equation (7), presented in the previous section. On the other hand, the CG-EGA measures 
the clinical acceptability of the prediction by analyzing the clinical accuracy as well as the coherence between successive predictions. It 
classifies a prediction either as an accurate prediction (AP), a benign error (BE), or an erroneous prediction (EP). A high AP rate and a low 
EP rate are necessary for a model to be clinically acceptable. The rates can be either averaged over all the test samples, or over the 
samples within a specific glycemic region (i.e., hypoglycemia, euglycemia and hyperglycemia). 

3.4. Glucose predictive models 

The aim of the study is to improve the clinical acceptability of deep models. To this end, we have first proposed a new loss function 
cMSE which penalizes the model during its training not only on prediction errors but also on predicted variation errors. We have then 
proposed the gcMSE, which is the cMSE customized to the task of glucose prediction. In particular, it introduces weighting coefficients 
based on the CG-EGA to enhance the clinical acceptability of the model. Finally, we proposed the PICA algorithm that progressively 
improves the clinical acceptability of the models through the use of the gcMSE function. The models that we present here aim at 
evaluating these different proposals. 

As reference models, we use the support vector regression model (SVR) and long short-term memory recurrent neural network (LSTM) 
from the GLYFE benchmark study (De Bois, 2019). Since the preprocessing steps are identical in this study and the present one, the 
results are fully comparable. The SVR and LSTM models represent, respectively, the best model and the best deep model in this 
benchmark.  

• The SVR model uses the radial basis function (RBF) kernel. All its hyperparameters have been individually optimized for every 
patient. The kernel coefficient, the penalty, and the wideness of the no-penalty tube have been grid searched in the ranges [10− 4,

10− 2], [100, 103], and [10− 3, 100] respectively.  
• The LSTM model has 2 hidden layers made of 256 long short-term memory units. It is trained with the Adam optimizer (mini- 

batches of 50 samples) and the MSE loss function. The learning rate has been grid-searched within [10− 4, 10− 3]. Finally, the early 
stopping methodology (after 50 epochs of non-improvement on the validation set) and a L2 penalty (10− 4) have been used for 
regularization purposes. 

Table 2 
Mean (with standard deviation) of statistical accuracy (RMSE, MAPE, and MASE) and general clinical acceptability (CG-EGA) for a prediction horizon 
of 30 min and for the IDIAB and OhioT1DM datasets.  

Model RMSE MAPE MASE CG-EGA (general) 

AP BE EP 

IDIAB Dataset 
SVR  20.32 (6.02) 8.66 (0.44) 0.85 (0.15) 92.69 (2.81) 5.34 (2.06) 1.97 (1.23) 

LSTM  19.85 (6.00) 9.04 (1.11) 0.85 (0.10) 92.20 (2.99) 5.05 (1.71) 2.76 (1.82) 

SVR*  20.67 (6.20) 8.86 (0.44) 0.88 (0.15) 93.62 (2.57) 4.47 (1.69) 1.92 (1.35) 

LSTM*  20.27 (6.30) 9.25 (1.21) 0.87 (0.09) 93.16 (3.13) 4.16 (1.75) 2.68 (2.00) 

pcLSTM  21.89 (5.68) 10.28 (1.34) 0.96 (0.11) 94.04 (3.26) 3.20 (1.66) 2.76 (2.07) 

pcLSTM*  22.63 (6.04) 10.64 (1.40) 1.00 (0.11) 94.24 (3.35) 2.94 (1.73) 2.82 (2.07) 

gpcLSTM  21.21 (5.64) 9.35 (0.92) 0.91 (0.13) 94.03 (2.66) 3.91 (1.48) 2.06 (1.54) 

gpcLSTM*  21.86 (5.94) 9.66 (0.95) 0.94 (0.13) 94.53 (2.84) 3.38 (1.55) 2.08 (1.57) 

gpcLSTMCA  40.68 (11.20) 18.14 (5.55) 1.91 (0.55) 95.34 (2.76) 3.29 (2.56) 1.37 (0.91) 

gpcLSTM*
CA  41.15 (11.18) 18.36 (5.47) 1.93 (0.54) 95.35 (2.87) 3.20 (2.61) 1.45 (0.92) 

gpcLSTM*
PICA  24.03 (7.15) 10.43 (1.18) 1.03 (0.09) 95.00 (2.74) 3.38 (1.99) 1.61 (1.22) 

OhioT1DM Dataset 
SVR  20.15 (2.33) 9.12 (2.11) 0.85 (0.02) 83.35 (3.91) 12.38 (2.83) 4.28 (1.83) 

LSTM  20.46 (2.08) 9.24 (2.10) 0.86 (0.02) 80.03 (4.17) 14.83 (2.88) 5.14 (2.11) 

SVR*  20.17 (2.30) 9.18 (2.12) 0.85 (0.02) 85.00 (4.05) 10.97 (2.72) 4.03 (1.90) 

LSTM*  20.43 (2.03) 9.26 (2.10) 0.86 (0.02) 82.14 (3.94) 13.06 (2.51) 4.81 (2.04) 

pcLSTM  21.53 (2.23) 10.07 (2.32) 0.93 (0.03) 87.45 (3.76) 8.46 (2.05) 4.09 (2.14) 

pcLSTM*  21.71 (2.22) 10.19 (2.35) 0.94 (0.03) 87.89 (3.61) 8.15 (1.94) 3.96 (2.12) 

gpcLSTM  21.66 (2.69) 9.65 (2.14) 0.92 (0.03) 86.97 (3.63) 9.50 (2.52) 3.53 (1.48) 

gpcLSTM*  21.82 (2.69) 9.76 (2.16) 0.93 (0.03) 87.59 (3.45) 9.01 (2.31) 3.41 (1.49) 

gpcLSTMCA  47.70 (6.31) 22.43 (2.76) 2.37 (0.53) 90.46 (2.85) 7.16 (1.66) 2.37 (1.28) 

gpcLSTM*
CA  47.82 (6.27) 22.47 (2.76) 2.37 (0.53) 90.51 (2.88) 7.12 (1.64) 2.37 (1.30) 

gpcLSTM*
PICA  23.50 (2.49) 10.46 (2.09) 1.01 (0.03) 88.72 (3.59) 8.20 (2.23) 3.08 (1.64)  
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First, to analyze the potential improvement of the clinical acceptability through the cMSE and gcMSE cost functions, we evaluate 
the pcLSTM and gpcLSTM models respectively. These two models are based on a two-output LSTM architecture, which, apart from the 
presence of the two outputs, is identical to the LSTM model of the GLYFE benchmark study. They are respectively trained to minimize 
the cMSE and gcMSE loss functions with a coherence factor c set to 8 for the IDIAB dataset and 2 for the OhioT1DM dataset. The 
difference in the coherence factor between the two sets is explained by a MSE of the predicted variations being approximately 4 times 
higher for the OhioT1DM dataset. As for the coefficients pab and phypo of the gcMSE, we have set them to 1 and 10 respectively. These 
coefficients are identical to those from the first iteration of the PICA algorithm. In addition, we propose to evaluate an additional 
variant of the gcMSE whose coefficient pab is set to 0. This model, denoted gpcLSTMCA is a model that aims at maximizing the clinical 
acceptability, without taking into account the accuracy of the model beyond clinical acceptability needs. 

The PICA algorithm uses the exponential smoothing technique to stabilize successive predictions. In order to fully evaluate the 
impact of the loss functions and the PICA algorithm, we use the exponential smoothing technique on all the models presented in this 
study. The smoothed variant of each model is represented by a superscript asterisk (e.g., LSTM*, pcLSTM*, gpcLSTM*

CA). All these 
models use a smoothing coefficient of 0.85, as it degrades only slightly the accuracy of the predicted signal. 

The PICA algorithm makes a compromise between the gpcLSTM* and gpcLSTM*
CA models. The emphasis on clinical acceptability of 

this compromise is progressive over the iterations of the algorithm. However, the accuracy constraint, through the coefficient pab is 
never equal to 0 (model gpcLSTM*

CA), because such a model has an accuracy far too low to be useful for people with diabetes. This is 
why the PICA algorithm stops when the MASE exceeds the value of 1 on the validation set. We represent by the model gpcLSTM*

PICA the 
results obtained when the PICA algorithm stops. These results represent the upper bounds of clinical acceptability while maintaining a 
useful accuracy. In the PICA algorithm, we use the update law of the coefficient pab presented by Equation (6). It involves the coef-
ficient α, the rate at which the constraint in accuracy is relaxed, which has been set to 0.9 in this study. A higher coefficient gives better 
control over the final trade-off, in return for a slower execution time (more iterations before convergence). The PICA algorithm uses the 
exponential smoothing technique on the model’s predictions to increase the stability of the predicted signal. The smoothing coefficient 
β, as for all the smoothed variants of the other models, has been fixed at 0.85. 

4. Results 

In this section we present the experimental results of this study. These results are represented in the form of two tables: Tables 2 and 
3. While Table 2 describes the general results of the different models in terms of RMSE, MAPE, MASE and general CG-EGA, Table 3 
gives a more detailed description, by region, of the CG-EGA. 

Within our two reference models, SVR and LSTM, the SVR model is the model with the best clinical acceptability (general or 
regional CGEGA) for comparable accuracy. In particular, the SVR model has one of the best clinical acceptability in the hypoglycemia 
region (69.39% and 49.71% AP for the IDIAB and OhioT1DM datasets respectively). The exponential smoothing improves the clinical 
acceptability of the SVR model (SVR* model) by − 12.79%1 of AP rate for an increase of +0.90% in RMSE (decrease in accuracy). The 
LSTM* model is subject to similar changes with − 11.44% AP and +0.98% RMSE. Table 3 shows that these improvements in clinical 
acceptability occur in the euglycemia or hyperglycemia regions, and not in the hypoglycemia region (small decrease in AP). 

The pcLSTM model and its smoothed variant pcLSTM*, using the cMSE loss function as well as the two-output architecture of the 
LSTM network, are showed to improve the clinical acceptability while deteriorating the accuracy. In particular, the pcLSTM* model 
compared to the LSTM* model has − 24.18% AP, and +8.95% RMSE. The improvement in clinical acceptability is greater for the 
OhioT1DM dataset (− 32.19% AP) than for the IDIAB dataset (− 16.16% AP). For a comparable decrease in accuracy, the OhioT1DM 
dataset benefits more from the cMSE loss function than the IDIAB set. Moreover, the pcLSTM* model has among the best clinical 
acceptability scores in the euglycemia and hyperglycemia regions. However, in comparison with the LSTM or LSTM* models, the 
clinical acceptability in the hypoglycemia region is deteriorated, especially for the OhioT1DM dataset. 

The gpcLSTM and gpcLSTM* models, using the gcMSE loss function, cMSE customized to blood glucose prediction, show a 
degradation of the RMSE and an improvement of the AP rate similar to the pcLSTM and pcLSTM* models. However, the gpcLSTM and 
gpcLSTM* models have a lower EP rate (− 19.53% and − 20.07% respectively), suggesting an improved clinical acceptability. Table 3 
shows that this improvement is mainly in the hypoglycemia region with much lower EP rates. 

The models gpcLSTMCA and gpcLSTM*
CA use a gcMSE function with the coefficient pab of 0. Thus, these models focus only on 

improving the clinical acceptability. By not seeking to improve the accuracy of predictions beyond the required clinical accuracy (P- 
EGA Zone B), these models have a very poor RMSE, MAPE and MASE. Nevertheless, they have the best clinical acceptability, with the 
highest AP and the lowest EP rates. The improvement is particularly important in the hypoglycemia region, as can be seen in Table 3. 

The gpcLSTM*
PICA model represents the last iteration of the PICA algorithm with a MASE on the validation set of less than 1. This 

model is intended to maximize the clinical acceptability, while having a reasonable accuracy (MASE less than 1). Compared to the 
gpcLSTM*

CA model, it has a slightly lower clinical acceptability (but better than all other models, thanks in particular to its low EP rate). 

1 Here we represent the decrease, in %, of what is metrically improvable. For the AP, which has a maximum of 100%, the ratio of change is 
calculated as (100 − AP1) = (100 − AP2). 
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5. Discussion 

The results show us that the exponential smoothing technique reduces the benign error (BE) rate in favor of a better AP rate, by 
reducing the amplitude of the variations between successive predictions. This improvement is valid for most of the models and has for 
counterpart a rather small decrease in the statistical accuracy of the model. Thus, exponential smoothing, used softly (coefficient β of 
0.85) is an efficient method to improve the stability of the prediction signal, making it safer for the people with diabetes. However, it 
remains useless in the hypoglycemia range where the majority of clinical prediction errors are due to poor accuracy. 

The benefits from using the cMSE loss function on glucose predictions are similar: successive glucose predictions are more 
consistent with each other, resulting in a large reduction in the BE rate. The effects are greater for the OhioT1DM dataset, which sees its 
EP rate decrease at the same time. It can be explained by a higher noise in the predicted glucose signal of the OhioT1DM dataset, noise 
that comes from the initial glucose signal. With its lower sampling frequency, the IDIAB glucose signal manages to be less noisy in 
comparison. The cMSE allows successive predictions to be made with a rate of change that better reflects the actual rate of change and 
thus improves its clinical acceptability. However, like exponential smoothing, improvements in clinical acceptability are not gener-
alized to all glycemic regions. In particular, the hypoglycemic region appears to suffer from the use of cMSE with an increase in its EP 
rate, especially for the OhioT1DM dataset. 

Table 3 
Mean (with standard deviation) of per-region clinical acceptability (CG-EGA) for a prediction horizon of 30 min and for the IDIAB and OhioT1DM 
datasets.  

Model CG-EGA (per region) 

Hypoglycemia Euglycemia Hyperglycemia 

AP BE EP AP BE EP AP BE EP 

IDIAB Dataset 
SVR  69.39 

(33.51) 
0.35 (0.70) 30.27 

(33.54) 
95.17 (2.01) 4.33 (1.83) 0.50 (0.47) 89.51 (6.09) 7.43 (3.86) 3.06 (2.53) 

LSTM  40.94 
(30.73) 

0.00 
(0.00) 

59.06 
(30.73) 

95.78 (1.48) 3.83 (1.55) 0.39 (0.38) 89.55 (5.60) 7.35 (3.21) 3.10 (2.45) 

SVR*  66.37 
(31.47) 

0.17 (0.35) 33.45 
(31.51) 

96.13 (1.81) 3.49 (1.66) 0.39 (0.36) 90.61 (5.67) 6.60 (3.23) 2.79 (2.79) 

LSTM*  37.99 
(31.22) 

0.00 
(0.00) 

62.01 
(31.22) 

96.71 (1.35) 2.95 (1.46) 0.33 (0.38) 91.02 (6.04) 6.18 (3.67) 2.80 (2.58) 

pcLSTM  34.59 
(29.27) 

0.00 
(0.00) 

65.41 
(29.27) 

97.58 (0.90) 2.13 (0.82) 0.29 (0.20) 92.60 (5.81) 4.94 (3.18) 2.46 (2.80) 

pcLSTM*  32.20 
(27.83) 

0.00 
(0.00) 

67.80 
(27.83) 

97.96 
(0.98) 

1.81 (0.91) 0.23 
(0.11) 

92.81 (6.25) 4.68 (3.48) 2.51 (2.85) 

gpcLSTM  64.79 
(24.95) 

0.00 
(0.00) 

35.21 
(24.95) 

96.60 (1.11) 3.03 (0.99) 0.37 (0.26) 92.06 (5.12) 5.42 (2.83) 2.51 (2.46) 

gpcLSTM*  61.87 
(25.17) 

0.00 
(0.00) 

38.13 
(25.17) 

97.23 (1.17) 2.46 (1.02) 0.31 (0.22) 92.65 (5.60) 4.85 (3.09) 2.50 (2.68) 

gpcLSTMCA  87.95 (9.58) 1.71 (3.43) 10.34 (8.15) 97.37 (1.36) 2.12 (1.03) 0.51 (0.40) 92.17 (4.46) 5.11 (4.52) 2.72 (2.39) 

gpcLSTM*
CA  87.77 (9.53) 1.71 (3.43) 10.51 (8.13) 97.50 (1.32) 1.97 (0.97) 0.52 (0.44) 92.10 (4.69) 5.03 (4.70) 2.87 (2.33) 

gpcLSTM*
PICA  68.49 

(27.85) 
0.57 (1.14) 30.94 

(28.22) 
97.35 (1.18) 2.32 (1.08) 0.33 (0.15) 93.16 

(4.84) 
5.08 (3.53) 1.76 

(1.49) 
OhioT1DM Dataset 

SVR  49.71 
(18.75) 

5.62 (4.02) 44.67 
(18.70) 

86.35 (4.24) 10.71 
(3.26) 

2.94 (1.23) 80.85 (3.24) 14.77 
(3.01) 

4.37 (1.84) 

LSTM  38.37 
(23.17) 

3.97 (3.72) 57.67 
(24.23) 

83.78 (5.33) 12.70 
(4.06) 

3.52 (1.47) 76.86 (3.70) 17.87 
(2.73) 

5.27 (2.21) 

SVR*  46.95 
(21.11) 

5.97 (4.05) 47.09 
(21.65) 

87.83 (4.22) 9.46 (3.21) 2.71 (1.22) 82.81 (3.43) 13.12 
(2.98) 

4.07 (2.00) 

LSTM*  37.34 
(23.50) 

4.11 (4.15) 58.56 
(24.17) 

85.71 (4.83) 11.10 
(3.58) 

3.19 (1.37) 79.27 (3.55) 15.85 
(2.40) 

4.88 (2.24) 

pcLSTM  25.28 
(19.11) 

3.64 (3.73) 71.08 
(19.35) 

90.79 (3.43) 6.93 (2.53) 2.28 (1.01) 85.78 (3.64) 10.83 
(2.55) 

3.40 (2.03) 

pcLSTM*  23.82 
(18.23) 

3.72 (3.48) 72.45 
(18.55) 

91.20 (3.17) 6.67 (2.35) 2.13 (0.96) 86.33 (3.54) 10.44 
(2.50) 

3.23 (1.96) 

gpcLSTM  53.66 
(22.59) 

4.34 (3.83) 42.00 
(22.86) 

89.39 (3.91) 7.99 (2.90) 2.63 (1.12) 84.61 (3.84) 11.79 
(3.20) 

3.61 (2.01) 

gpcLSTM*  52.37 
(22.06) 

4.32 (3.15) 43.30 
(22.42) 

90.02 (3.69) 7.47 (2.77) 2.52 (1.04) 85.27 (3.69) 11.31 
(2.95) 

3.42 (2.02) 

gpcLSTMCA  91.17 (8.50) 1.26 (2.08) 7.57 (8.01) 91.61 (2.03) 6.62 (1.39) 1.77 (0.74) 87.97 
(5.00) 

8.67 (2.64) 3.36 
(2.63) 

gpcLSTM*
CA  91.02 (8.49) 1.21 

(1.97) 
7.77 (8.00) 91.71 

(2.02) 
6.55 (1.34) 1.75 

(0.77) 
87.95 (5.05) 8.69 (2.69) 3.36 

(2.62) 
gpcLSTM*

PICA  61.30 
(20.12) 

2.92 (2.38) 35.79 
(20.23) 

90.84 (3.57) 7.04 (2.57) 2.11 (1.07) 86.48 (3.95) 10.07 
(2.66) 

3.45 (2.31)  
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The gcMSE action is more focused on the decrease of the EP rate, as shown by the models gpcLSTM, gpcLSTMCA, gpcLSTM*
PICA. In 

contrast with the exponential smoothing technique and the cMSE loss function, the gcMSE improves all glycemic regions, and in 
particular the hypoglycemic region. Moreover, these improvements allow the LSTM neural network to surpass, in clinical accept-
ability, the SVR model which is the best model of the GLYFE benchmark study. Through Fig. 7, we can appreciate the differences in the 
predictions of the different models. First, we can see the large variations and noise in the predicted glucose signal of the LSTM model. 
These oscillations are reduced for the other models, becoming closer to the observed glucose signal. However, when using the cMSE 
loss function (pcLSTM* signal in purple), we witness a large loss of accuracy in the hypoglycemia region (between 4:00 and 8:00 a.m.). 
While the signal gpcLSTM*

PICA is very close to the signal observed in the hypoglycemia region, this is achieved at the cost of an overall 
drop in accuracy. Finally, gpcLSTM*, is a compromise between the two. 

Although we can conclude on the strength of using the gcMSE loss function in the training of deep models predicting future glucose 
levels of people with diabetes, the different results show us that there are many possible tradeoffs between accuracy and clinical 
acceptability. The PICA algorithm proposed in this study aims at selecting efficiently the best compromise between accuracy and 
clinical acceptability based on selection criteria. Fig. 8 gives a graphical representation of the changes in MASE, general AP rate and 
general EP rate of the models throughout the PICA algorithm for all the patients. As previously discussed, there is no clinical criterion 
for glucose predictive models yet, so the only criterion for stopping the algorithm here was the MASE exceeding 1. The figure first 
shows us that the number of iterations before stopping the algorithm is variable from one dataset to another, and also from one patient 
to another (25.0 ± 3.96 for the IDIAB dataset, and 11.66 ± 5.06 for the OhioT1DM dataset). This is explained, first of all, by the 
variable initial accuracy of the different patients, some patients being easier to predict than others (see iteration 0 on Fig. 8a and b). As 
we have observed through the analysis of Table 2, the main improvements in clinical acceptability are made at the first iteration 
(iteration 1) of the algorithm when introducing the gcMSE loss function and exponential smoothing. Nevertheless, throughout the 
algorithm, the clinical acceptability gradually improves at the expense of the accuracy. We can see that the rate of deterioration and 
improvement is different from one patient to another, showing the very high inter-person variability of the diabetic population. 

From Fig. 8, we can also derive the computing time gained by using the PICA algorithm instead of standard grid search in the 
identification of the optimal solution. Here the calculations are made given that a full training of a model and its finetuning last for 250 
and 50 epochs, respectively. In average, 1492 and 833 epochs were needed for the PICA algorithm for the IDIAB and OhioT1DM 
datasets respectively. In comparison, a grid search of 30 and 20 iterations would have taken a total of 7750 and 5250, yielding a 5 to 6- 
fold decrease of the computing time made by the PICA algorithm. 

Even though there is currently no clinical criterion for glucose prediction models, we can analyze the use of two hypothetical 
criteria through Table 4: a minimum AP rate, and a maximum EP rate. As expected, the harder the clinical criteria (higher threshold 
and/or combination of criteria), the lower the number of patients passing the clinical test. Only one patient in the IDIAB dataset 
managed to have simultaneously more than 97% AP and less than 1% EP. In addition, we can note a greater success of IDIAB patients 
on these clinical tests, compared to OhioT1DM patients. As previously mentioned, these differences in clinical performance are due to 
the difference in experimental systems. While the final evaluation of the OhioT1DM dataset is done every 5 min, it is done every 15 min 
for the IDIAB dataset. In addition, the glucose signal of IDIAB patients is overall less noisy, and therefore more stable and easier to 

Fig. 7. Predictions of the LSTM*, pcLSTM*, gpcLSTM* and gpcLSTM*
PICA models for the patient 575 from the OhioT1DM dataset for a given day.  
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Fig. 8. Evolution of the MASE and CG-EGA (AP and EP) metrics throughout the PICA algorithm for the IDIAB and OhioT1DM datasets. Iterations 
0 and 0* respectively represent the results of the model trained with the MSE loss function before and after smoothing the predictions. 
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predict. Thus, for a future practical use, the clinical criteria must be rigorously standardized. 
Finally, we note that the MASE on the testing set (the one reported in Tables 2 and 3) is slightly higher than 1 (1.03 and 1.01 for the 

IDIAB and OhioT1DM datasets). Using such a stopping criterion, we could have assumed that the final MASE on the testing set would 
be less than 1, as it is the case on the validation set. This happens because the test subset is not fully representative of the validation 
subset. This is due to the general small quantities of data in the datasets, negatively impacting the representativeness of these subsets. 
We also note that the standard deviation for the IDIAB dataset is higher, showing that the final value of the MASE is highly variable 
depending on the subject. Thus, the accuracy of the PICA algorithm would be improved by using more data (which would also improve 
the performance of the models in general). 

6. Conclusion 

In this study, we have proposed a framework for the integration of clinical criteria into the training of deep models. Clinical criteria 
are often different from standard statistical metrics used as loss functions. As a consequence, the best model, given a loss function used 
during its training, is not necessarily the model with the best clinical acceptability. We address this issue from the perspective of the 
challenging task of predicting future glucose values of people with diabetes. 

In glucose prediction, the CG-EGA metric measures the clinical acceptability of the predictions. In particular, it assesses the safety of 
the predictions by looking at the prediction accuracy and the predicted rate of change accuracy. Moreover, the metric behaves 
differently for the different glycemic regions, some errors being more dangerous than others without being high amplitude errors. 
Starting from the cMSE loss function we proposed in a previous work (De Bois et al., 2019a,b) that penalizes the model during its 
training not only on prediction errors but also on predicted variation errors, we proposed to personalize the loss function to the glucose 
prediction task. Based on the CG-EGA, this personalization, called gcMSE, weights the errors differently depending on the scores 
obtained in the P-EGA and R-EGA. Finally, we proposed the PICA algorithm to obtain the solution that maximizes the accuracy of the 
model while at the same time satisfying given clinical criteria. 

We evaluate the different proposed loss functions and the PICA algorithm with two different diabetes datasets, the IDIAB and the 
OhioT1DM dataset. First, we showed that the cMSE loss function increases the coherence of successive predictions, improving the 
clinical acceptability of the models. However, this improvement comes at the cost of a decrease in the accuracy of the model. Then, we 
showed that the gcMSE further improves the clinical acceptability by reducing the rate of life-threatening errors. Finally, we 
demonstrate the usefulness of the PICA algorithm that help in the selection of the desired tradeoff between general accuracy and 
clinical acceptability. 

LSTM recurrent neural networks are not the only models that can use the proposed approaches. In future works, it would be 
interesting to apply them to other promising models. For instance, they could be used with models that, by nature, predict the whole 
signal trajectory up to the prediction horizon (e.g., kernel adaptive filters Yu et al., 2018). 

The analysis of different clinical criteria showed that not all the patients were able to meet them easily. This is related to the 
difficulty of the glucose prediction task of the patient, varying from patient to patient, but also to the nature of dataset, and in 
particular to the devices used for the data collection. These factors would need to be taken into account when creating future regu-
lations for the use of such models by people with diabetes. 
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Table 4 
Number of patients within a given dataset that can satisfy different clinical criteria (minimal AP rate or maximal 
EP rate) through the PICA algorithm.  

Clinical Criterion Dataset 

AP (≥)  EP (≤)  IDIAB OhioT1DM 

80 – 6 6 
90 – 6 3 
95 – 4 0 
97 – 3 0 
– 7 6 6 
– 5 6 4 
– 3 6 3 
– 1 4 0 

80 7 6 6 
90 5 6 3 
95 3 4 0 
97 1 2 0  
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