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Introduction - o

* Motor Imagery (Ml) is a widely used paradigm in EEG-based Brain-Computer Interface \
(BCI) systems.
It requires subjects to imagine movements (e.g., left or right hand), without actual

motion.
* Accurate classification of MI-EEG signals is crucial for enabling BCls to assist with tasks ‘
such as rehabilitation and motor function recovery in patients.
* However, MI-EEG data is challenging to work with due to:
* High temporal resolution
* Low spatial resolution
* Low signal-to-noise ratio

* High inter-subject variability

* EEG signals inherently contain spatial dependencies (across channels) and temporal
dependencies (across time), both of which are essential for accurate classification.

* Some methods rely heavily on Convolutional Neural Networks (CNNs) to extract both
spatial and temporal features (depending on the type of kernel used), but CNNs often
struggle to capture global dependencies, limiting their effectiveness on complex EEG
tasks.

* To better model temporal dynamics, some models combine CNNs with Recurrent Neural
Networks (RNNs).

* Transformers can model both spatial and temporal relationships globally through an
attention mechanism, making them ideal for EEG analysis.




Contributions of This Study

propose an end-to-end Transformer framework that is capable of processing raw EEG data
while retaining the spatiotemporal characteristics that are important for model visualization.

* Novel Transformer-Based Models
Designed five architectures to classify raw MI-EEG data:

* s-Trans: Spatial Transformer

* t-Trans: Temporal Transformer

* s-CTrans: Spatial CNN + Transformer

* t-CTrans: Temporal CNN + Transformer

* f-CTrans: Fusion of spatial & temporal CNN + Transformer

‘ * Integration of Positional Embedding (PE)
Explored 3 PE strategies (relative, channel-correlation, learned),

\ * Interpretable Attention Visualization
Visualized attention weights across electrodes.

S



Dataset & Preprocessing

&
\s
Dataset: PhysioNet EEG Motor Preprocessing:
Movement/Imagery
109 subjects, 64 electrodes, 160 Hz sampling rate Z-score normalization applied to each EEG trial
Tasks: left/right fist (L/R), both fists against both feet Added small random noise (a=0.01) to improve
(F), and rest with eyes open(O) generalization and avoid overfitting

Each trial lasted 8 seconds Data segmented from the motor imagery period

Used 3s and 6s EEG segments for 2-(L/R), 3-(L/R/O),
and 4-class (L/R/O/F) classification



Structure of the transformer module
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* Multi-head attention consisted of several “Scaled Dot-Product Attention™ layers, allowing the model to jointly focus on
information from different representation subspaces at different locations.
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* 8 attention heads were employed in this study,
and solely embedded the encoder part of the
Transformer into the EEG classification.

* Three types of PE were explored:

* Relative Positional Encoding — uses sine &
M O d e l cosine functions to represent positions.

* Channel Correlation Encoding — based on

ArC h ite Ctu fe cosine distance between electrodes.

* Learned Positional Encoding - trainable
embedding matrix updated during training.

* The number of Transformer layers was varied
from 1 to 6, and using 3 layers achieved the
best classification performance.



Spatial and Temporal Transformer Models
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Spatial Transformer (s-Trans)
EEG data along the time axis from each channel were
regarded as features, and the Transformer module

calculated the correlations between different channels.

Temporal-wise inputs
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Temporal Transformer (t-Trans)
EEG data along the channel axis at the same time point
were regarded as features, and the model calculated the
correlations between different time points.



CNN + Transformer Models

Combined CNN’s local feature extraction with Transformer’s
global attention to enhance EEG classification.

Three hybrid models were proposed:

* s-CTrans: CNN for temporal features, Transformer for
spatial attention

* t-CTrans: CNN for spatial features, Transformer for
temporal attention

 f-CTrans: Parallel fusion of spatial and temporal
branches

CNN layers reduce dimensionality and extract robust features
before passing them to the Transformer.

s-CTrans
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Classification
Results

Using 3-second EEG data, the best
accuracies achieved were:

 83.31% (2-class), 74.44% (3-class),
64.22% (4-class)
> Outperformed all baseline
models.

Using 6-second data, performance
improved further:

 87.80%, 78.98%, and 68.54% for 2-
, 3-, and 4-class tasks respectively.

f-CTrans performed best on 3s data
(3/4-class),
while t-CTrans was best on 6s data.

The EEG data with a longer period
produced higher classification accuracy.

ACCURACY (%) COMPARISON BETWEEN OUR MODELS AND OTHER
SOTA MODELS IN THE PHYSIONET DATASET FOR CROSS-INDIVIDUAL

CLASSIFICATION

3s >=4s
Models /R L/R/O L/R/O/F LR L/R/O L/R/OJF

Our s-Trans 81.11 70.25 59.35 87.46 75.41 64.04

QOur t-Trans 80.77 70.31 58.21 86.10 75.24 62.15

Our s-CTrans 83.31 7288 63.25 87.80 77.09 68.10

Our t-CTrans 82.56 7287 6348 87.80 78.98 68.54

Our f-CTrans 8295 7444 64.22 87.26 78.44 67.96

CNN (2018) [5] 80.38 69.82 5858 87.98 76.61 65.73
EEGNet (2020) [13] 82.43 72.33 63.16 -- -- --
EEGNet Fusion (2020) [60] -- - - 83.80 -- =
DG-CRAM (2020) [61] 74.71 - - - - -
MAML-CNN (2021) [62] 80.60 - - - - -
BENDR (2021) [45] -- - 86.70 -- --




Effect of
Positional
Embedding
(PE)

CLASSIFICATION RESULTS OF SPATIAL-TRANSFORMER MODEL USING
DIFFERENT POSITIONAL EMBEDDING METHODS

480 (3s) 960 (6s)
Methods
L/R L/R/O L/R/O/F L/R L/R/O L/R/O/F
relative PE 81.11% 70.25% 59.35% 87.46% 75.41% 64.04%
Ch |
ahne 81.49% 69.48% 59.47% 87.14% 75.26% 64.05%
correlation PE
learned PE 81.47% 70.02% 59.08% 87.07% 75.52% 64.06%
No PE 81.13% 68.25% 57.23% 86.83% 73.15% 61.43%

Three PE methods (relative, channel-correlation, learned) were tested using the

s-Trans model.

All PE methods outperformed the no-PE baseline for both 3s and 6s EEG

data.

Learned PE showed slightly better accuracy but required more training

parameters.

Adding positional embeddings improves classification accuracy, even if

modestly.



Conclusion & Future Directions

* Developed five Transformer-based models for motor imagery EEG classification.
* Achieved state-of-the-art accuracy across 2-, 3-, and 4-class tasks using raw EEG.

* Fusion model (f-CTrans) performed best on short input (3s), showing robustness and
efficiency.

* Models are suitable for real-time BCI applications and can be extended to other EEG tasks
like disease diagnhosis or neurorehabilitation.

* Future Optimizations:

 Use multi-scale attention to better capture EEG features with varying time-scales.

* Prune uninformative attention heads to reduce computational cost and enhance
model robustness.
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