
A Transformer-Based Approach Combining Deep 
Learning Network and Spatial-Temporal Information 

for Raw EEG Classification

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022
Cited by 204

Presenter: Nooshin Taheri
6/25/2025



Introduction
• Motor Imagery (MI) is a widely used paradigm in EEG-based Brain-Computer Interface 

(BCI) systems.
It requires subjects to imagine movements (e.g., left or right hand), without actual 
motion.

• Accurate classification of MI-EEG signals is crucial for enabling BCIs to assist with tasks 
such as rehabilitation and motor function recovery in patients.

• However, MI-EEG data is challenging to work with due to:
• High temporal resolution
• Low spatial resolution
• Low signal-to-noise ratio
• High inter-subject variability

• EEG signals inherently contain spatial dependencies (across channels) and temporal 
dependencies (across time), both of which are essential for accurate classification.

• Some methods rely heavily on Convolutional Neural Networks (CNNs) to extract both 
spatial and temporal features (depending on the type of kernel used), but CNNs often 
struggle to capture global dependencies, limiting their effectiveness on complex EEG 
tasks.

• To better model temporal dynamics, some models combine CNNs with Recurrent Neural 
Networks (RNNs).

• Transformers can model both spatial and temporal relationships globally through an 
attention mechanism, making them ideal for EEG analysis.



Contributions of This Study

• Novel Transformer-Based Models
Designed five architectures to classify raw MI-EEG data:
• s-Trans: Spatial Transformer
• t-Trans: Temporal Transformer
• s-CTrans: Spatial CNN + Transformer
• t-CTrans: Temporal CNN + Transformer
• f-CTrans: Fusion of spatial & temporal CNN + Transformer

• Integration of Positional Embedding (PE)
Explored 3 PE strategies (relative, channel-correlation, learned),

• Interpretable Attention Visualization
Visualized attention weights across electrodes.

propose an end-to-end Transformer framework that is capable of processing raw EEG data 
while retaining the spatiotemporal characteristics that are important for model visualization.



Dataset & Preprocessing

Dataset: PhysioNet EEG Motor 
Movement/Imagery

109 subjects, 64 electrodes, 160 Hz sampling rate

Tasks: left/right fist (L/R), both fists against both feet 
(F), and rest with eyes open(O)

Each trial lasted 8 seconds

Used 3s and 6s EEG segments for 2-(L/R), 3-(L/R/O), 
and 4-class (L/R/O/F) classification

Preprocessing:

Z-score normalization applied to each EEG trial

Added small random noise (α = 0.01) to improve 
generalization and avoid overfitting

Data segmented from the motor imagery period



Structure of the transformer module

• Multi-head attention consisted of several “Scaled Dot-Product Attention” layers, allowing the model to jointly focus on 

information from different representation subspaces at different locations.



Model 
Architecture

• 8 attention heads were employed in this study, 
and solely embedded the encoder part of the 
Transformer into the EEG classification. 

• Three types of PE were explored:
• Relative Positional Encoding – uses sine & 

cosine functions to represent positions.
• Channel Correlation Encoding – based on 

cosine distance between electrodes.
• Learned Positional Encoding – trainable 

embedding matrix updated during training.

• The number of Transformer layers was varied 
from 1 to 6, and using 3 layers achieved the 
best classification performance.



Spatial and Temporal Transformer Models

Spatial Transformer (s-Trans)
EEG data along the time axis from each channel were 

regarded as features, and the Transformer module 
calculated the correlations between different channels.

Temporal Transformer (t-Trans)
EEG data along the channel axis at the same time point 

were regarded as features, and the model calculated the 
correlations between different time points.



CNN + Transformer Models

• Combined CNN’s local feature extraction with Transformer’s 
global attention to enhance EEG classification.

• Three hybrid models were proposed:
• s-CTrans: CNN for temporal features, Transformer for 

spatial attention
• t-CTrans: CNN for spatial features, Transformer for 

temporal attention
• f-CTrans: Parallel fusion of spatial and temporal 

branches

• CNN layers reduce dimensionality and extract robust features 
before passing them to the Transformer.

s-CTrans t-CTrans

f-CTrans



Classification 
Results

• Using 3-second EEG data, the best 
accuracies achieved were:
• 83.31% (2-class), 74.44% (3-class), 

64.22% (4-class)
→ Outperformed all baseline 
models.

• Using 6-second data, performance 
improved further:
• 87.80%, 78.98%, and 68.54% for 2-

, 3-, and 4-class tasks respectively.
• f-CTrans performed best on 3s data 

(3/4-class),
while t-CTrans was best on 6s data.

•  The EEG data with a longer period 
produced higher classification accuracy.



Effect of 
Positional 

Embedding 
(PE) • Three PE methods (relative, channel-correlation, learned) were tested using the 

s-Trans model.

• All PE methods outperformed the no-PE baseline for both 3s and 6s EEG 
data.

• Learned PE showed slightly better accuracy but required more training 
parameters.

• Adding positional embeddings improves classification accuracy, even if 
modestly.



Conclusion & Future Directions

• Developed five Transformer-based models for motor imagery EEG classification.

• Achieved state-of-the-art accuracy across 2-, 3-, and 4-class tasks using raw EEG.

• Fusion model (f-CTrans) performed best on short input (3s), showing robustness and 
efficiency.

• Models are suitable for real-time BCI applications and can be extended to other EEG tasks 
like disease diagnosis or neurorehabilitation.

• Future Optimizations:
• Use multi-scale attention to better capture EEG features with varying time-scales.
• Prune uninformative attention heads to reduce computational cost and enhance 

model robustness.
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