A Transformer-Based Approach Combining Deep Learning Network and Spatial-Temporal Information for Raw EEG Classification

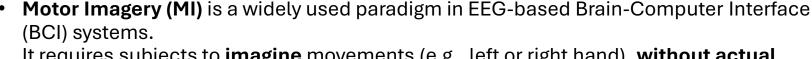
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022

Cited by 204

Presenter: Nooshin Taheri

6/25/2025

Introduction



It requires subjects to **imagine** movements (e.g., left or right hand), **without actual motion**.

- Accurate classification of MI-EEG signals is **crucial** for enabling BCIs to assist with tasks such as **rehabilitation** and **motor function recovery** in patients.
- However, MI-EEG data is challenging to work with due to:
 - High temporal resolution
 - Low spatial resolution
 - Low signal-to-noise ratio
 - High inter-subject variability
- EEG signals inherently contain **spatial dependencies** (across channels) and **temporal dependencies** (across time), both of which are essential for accurate classification.
- Some methods rely heavily on **Convolutional Neural Networks (CNNs)** to extract both **spatial and temporal features** (depending on the type of kernel used), but CNNs often struggle to capture **global dependencies**, limiting their effectiveness on complex EEG tasks.
- To better model temporal dynamics, some models combine CNNs with Recurrent Neural Networks (RNNs).
- Transformers can model both spatial and temporal relationships globally through an attention mechanism, making them ideal for EEG analysis.

Contributions of This Study

propose an end-to-end Transformer framework that is capable of processing raw EEG data while retaining the spatiotemporal characteristics that are important for model visualization.

Novel Transformer-Based Models

Designed five architectures to classify raw MI-EEG data:

- **s-Trans**: Spatial Transformer
- **t-Trans**: Temporal Transformer
- s-CTrans: Spatial CNN + Transformer
- t-CTrans: Temporal CNN + Transformer
- f-CTrans: Fusion of spatial & temporal CNN + Transformer

Integration of Positional Embedding (PE)

Explored 3 PE strategies (relative, channel-correlation, learned),

Interpretable Attention Visualization

Visualized attention weights across electrodes.

Dataset & Preprocessing

Dataset: PhysioNet EEG Motor Movement/Imagery

109 subjects, 64 electrodes, 160 Hz sampling rate

Tasks: left/right fist (L/R), both fists against both feet (F), and rest with eyes open(O)

Each trial lasted 8 seconds

Used **3s** and **6s** EEG segments for 2-(L/R), 3-(L/R/O), and 4-class (L/R/O/F) classification

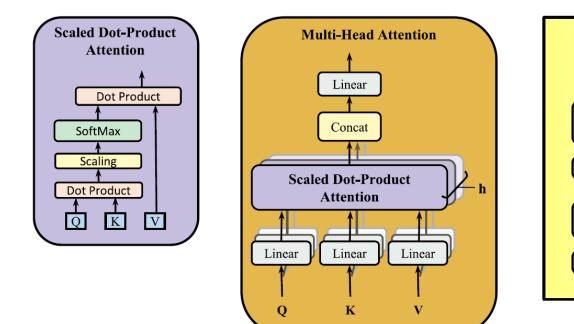
Preprocessing:

Z-score normalization applied to each EEG trial

Added small **random noise** (α = **0.01**) to improve generalization and avoid overfitting

Data segmented from the motor imagery period

Structure of the transformer module



Attention(Q, K, V) = softmax
$$\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

• Multi-head attention consisted of several "Scaled Dot-Product Attention" layers, allowing the model to jointly focus on information from different representation subspaces at different locations.

Transformer module

Multi-Head

Attention

Add & Norm

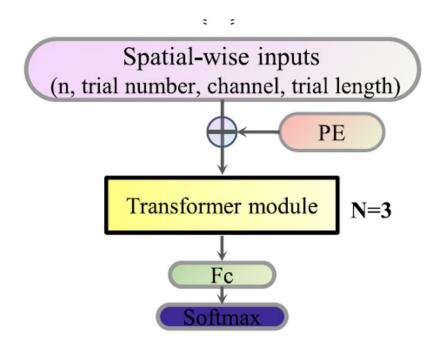
Feed Forward

Add & Norm

Model Architecture

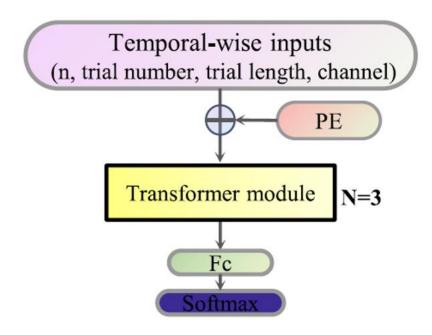
- 8 attention heads were employed in this study, and solely embedded the encoder part of the Transformer into the EEG classification.
- Three types of PE were explored:
 - Relative Positional Encoding uses sine & cosine functions to represent positions.
 - Channel Correlation Encoding based on cosine distance between electrodes.
 - Learned Positional Encoding trainable embedding matrix updated during training.
- The number of Transformer layers was varied from 1 to 6, and using 3 layers achieved the best classification performance.

Spatial and Temporal Transformer Models



Spatial Transformer (s-Trans)

EEG data along the time axis from each channel were regarded as features, and the Transformer module calculated the correlations between different channels.

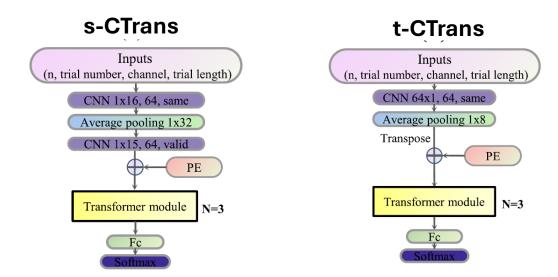


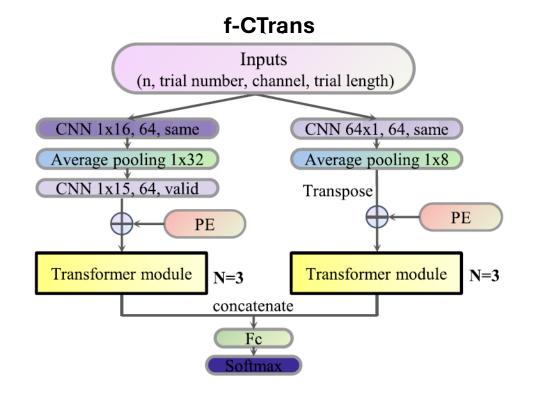
Temporal Transformer (t-Trans)

EEG data along the channel axis at the same time point were regarded as features, and the model calculated the correlations between different time points.

CNN + Transformer Models

- Combined CNN's local feature extraction with Transformer's global attention to enhance EEG classification.
- Three hybrid models were proposed:
 - s-CTrans: CNN for temporal features, Transformer for spatial attention
 - t-CTrans: CNN for spatial features, Transformer for temporal attention
 - f-CTrans: Parallel fusion of spatial and temporal branches
- CNN layers reduce dimensionality and extract robust features before passing them to the Transformer.





Classification Results

- Using 3-second EEG data, the best accuracies achieved were:
 - **83.31**% (2-class), **74.44**% (3-class), **64.22**% (4-class)
 - → Outperformed all baseline models.
- Using 6-second data, performance improved further:
 - **87.80**%, **78.98**%, and **68.54**% for 2-, 3-, and 4-class tasks respectively.
- **f-CTrans** performed best on 3s data (3/4-class), while **t-CTrans** was best on 6s data.
- The EEG data with a longer period produced higher classification accuracy.

ACCURACY (%) COMPARISON BETWEEN OUR MODELS AND OTHER SOTA MODELS IN THE PHYSIONET DATASET FOR CROSS-INDIVIDUAL CLASSIFICATION

Models	3 s			>= 4 s		
iviodeis	L/R	L/R/O	L/R/O/F	L/R	L/R/O	L/R/O/F
Our s-Trans	81.11	70.25	59.35	87.46	75.41	64.04
Our t-Trans	80.77	70.31	58.21	86.10	75.24	62.15
Our s-CTrans	83.31	72.88	63.25	87.80	77.09	68.10
Our t-CTrans	82.56	72.87	63.48	87.80	78.98	68.54
Our f-CTrans	82.95	74.44	64.22	87.26	78.44	67.96
CNN (2018) [5]	80.38	69.82	58.58	87.98	76.61	65.73
EEGNet (2020) [13]	82.43	72.33	63.16			
EEGNet Fusion (2020) [60]				83.80		
DG-CRAM (2020) [61]	74.71					
MAML-CNN (2021) [62]	80.60					
BENDR (2021) [45]				86.70		

Effect of Positional Embedding (PE)

CLASSIFICATION RESULTS OF SPATIAL-TRANSFORMER MODEL USING DIFFERENT POSITIONAL EMBEDDING METHODS

Methods		480 (3s)		960 (6s)			
ivietnous	L/R	L/R/O	L/R/O/F	L/R	L/R/O	L/R/O/F	
relative PE	81.11%	70.25%	59.35%	87.46%	75.41%	64.04%	
Channel correlation PE	81.49%	69.48%	59.47%	87.14%	75.26%	64.05%	
learned PE	81.47%	70.02%	59.08%	87.07%	75.52%	64.06%	
No PE	81.13%	68.25%	57.23%	86.83%	73.15%	61.43%	

- Three PE methods (relative, channel-correlation, learned) were tested using the s-Trans model.
- All PE methods outperformed the no-PE baseline for both 3s and 6s EEG data.
- Learned PE showed slightly better accuracy but required more training parameters.
- Adding positional embeddings improves classification accuracy, even if modestly.

Conclusion & Future Directions

- Developed five **Transformer-based models** for motor imagery EEG classification.
- Achieved state-of-the-art accuracy across 2-, 3-, and 4-class tasks using raw EEG.
- Fusion model (f-CTrans) performed best on short input (3s), showing robustness and efficiency.
- Models are suitable for **real-time BCI applications** and can be extended to other EEG tasks like **disease diagnosis** or **neurorehabilitation**.
- Future Optimizations:
 - Use **multi-scale attention** to better capture EEG features with varying time-scales.
 - **Prune uninformative attention heads** to reduce computational cost and enhance model robustness.