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Summary
Background Large language models (LLMs) have shown promising performance in various healthcare domains, but
their effectiveness in identifying specific clinical conditions in real medical records is less explored. This study
evaluates LLMs for detecting signs of cognitive decline in real electronic health record (EHR) clinical notes,
comparing their error profiles with traditional models. The insights gained will inform strategies for performance
enhancement.

Methods This study, conducted at Mass General Brigham in Boston, MA, analysed clinical notes from the four years
prior to a 2019 diagnosis of mild cognitive impairment in patients aged 50 and older. We developed prompts for two
LLMs, Llama 2 and GPT-4, on Health Insurance Portability and Accountability Act (HIPAA)-compliant cloud-
computing platforms using multiple approaches (e.g., hard prompting, retrieval augmented generation, and error
analysis-based instructions) to select the optimal LLM-based method. Baseline models included a hierarchical
attention-based neural network and XGBoost. Subsequently, we constructed an ensemble of the three models
using a majority vote approach. Confusion-matrix-based scores were used for model evaluation.

Findings We used a randomly annotated sample of 4949 note sections from 1969 patients (women: 1046 [53.1%]; age:
mean, 76.0 [SD, 13.3] years), filtered with keywords related to cognitive functions, for model development. For
testing, a random annotated sample of 1996 note sections from 1161 patients (women: 619 [53.3%]; age: mean, 76.5
[SD, 10.2] years) without keyword filtering was utilised. GPT-4 demonstrated superior accuracy and efficiency
compared to Llama 2, but did not outperform traditional models. The ensemble model outperformed the
individual models in terms of all evaluation metrics with statistical significance (p < 0.01), achieving a precision of
90.2% [95% CI: 81.9%–96.8%], a recall of 94.2% [95% CI: 87.9%–98.7%], and an F1-score of 92.1% [95% CI:
86.8%–96.4%]. Notably, the ensemble model showed a significant improvement in precision, increasing from a
range of 70%–79% to above 90%, compared to the best-performing single model. Error analysis revealed that 63
samples were incorrectly predicted by at least one model; however, only 2 cases (3.2%) were mutual errors across
all models, indicating diverse error profiles among them.

Interpretation LLMs and traditional machine learning models trained using local EHR data exhibited diverse error
profiles. The ensemble of these models was found to be complementary, enhancing diagnostic performance. Future
research should investigate integrating LLMs with smaller, localised models and incorporating medical data and
domain knowledge to enhance performance on specific tasks.
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Research in context

Evidence before this study
We searched PubMed and Web of Science for publications
from database inception to 19 May 2023, using a broad range
of keywords related to generative large language models
(LLMs), including chatbot, generative artificial intelligence
(AI), and commonly available LLMs. Among the 6332 distinct
articles retrieved, several knowledge gaps were identified: 1)
no studies addressed the early detection of cognitive decline
using LLMs; 2) only four studies analysed real electronic health
record (EHR) data with LLMs in HIPAA-compliant cloud
computing platforms; 3) no studies compared LLMs with
traditional AI approaches, such as conventional deep learning
and machine learning models.

Added value of this study
This study conducted a comparative analysis of the
performance of LLMs against other deep learning and
traditional machine learning methods using real EHR data.
The study included both open-source and proprietary LLMs
and utilised 6945 annotated clinical notes from real EHR data.
Our main scientific contributions are as follows: 1) We

developed and evaluated advanced prompting strategies,
including few-shot, retrieval augmented generation (RAG),
and error analysis-based instructions, finding that adding
error-analysis-based instructions led to the best performance.
2) We observed that the best-performing LLM with an
optimised prompting strategy did not outperform traditional
AI methods trained with local and domain-specific EHR data.
3) A comprehensive analysis revealed that the error profiles of
LLMs trained with a general domain corpus, locally trained
deep learning models, and machine learning models are
markedly different; combining them into an ensemble
significantly boosted performance.

Implications of all the available evidence
Our findings underscore that general-domain LLMs require
further refinement for clinical decision-support tasks and
applications. Future research should explore strategies for
prompting, model fine-tuning, and integrating LLMs with
smaller, localised models and knowledge bases to enhance
task-specific performance.
Introduction
Large Language Models (LLMs), neural models with
billions of parameters trained on extensive and diverse
text corpora, have demonstrated remarkable capabilities
in clinical language understanding tasks.1–5 They offer
distinct advantages over traditional rule-based and ma-
chine learning approaches, which are often trained from
scratch on narrower clinical datasets.6–8 Previous studies
have shown that LLMs achieve impressive performance
in a variety of clinical natural language processing (NLP)
tasks, such as question answering, named entity recog-
nition, and information extraction.1,2 However, the
effectiveness of LLMs in identifying specific clinical
conditions within real medical records remains under-
explored. Their lack of explicit training on specific
medical records may impact their accuracy.9 This study
aims to evaluate the performance of LLMs in detecting
signs of cognitive decline within clinical notes, using
this as a case study to explore their effectiveness and
compare their error profiles with those of traditional
models trained on domain-specific corpora. The insights
gained will inform strategies for further enhancement.

Alzheimer’s disease (AD) and related dementias
(ADRD) affect millions of Americans,10 significantly
reducing patient quality of life and imposing substantial
emotional and financial burdens,11 with care costs pro-
jected to reach $1.1 trillion by 2050.12 Existing treat-
ments offer only temporary relief,13 highlighting the
urgent need for breakthroughs in AD/ADRD therapy.14

Timely detection of cognitive decline can facilitate early
interventions and support involvement in clinical trials
for AD/ADRD.15–18 Electronic health records (EHRs),
particularly clinical notes, are crucial resources for
identifying early indicators of disease, yet traditional
diagnostic tools and variability in screening practices
complicate detection.19–22 NLP provides a promising so-
lution by efficiently analysing large datasets and identi-
fying subtle signs of decline that traditional diagnostics
may miss.23 Although studies have been conducted to
identify cognitive decline using NLP,7,24–26 the effective-
ness of LLMs in identifying cognitive decline through
EHRs remains under-explored.

This research utilises LLMs within HIPAA-
compliant computing environments for a pioneering
exploration of EHR note analysis for cognitive decline
detection. It evaluates the effectiveness and interpret-
ability of LLMs compared to conventional machine
learning methods and examines the synergy between
LLMs and machine learning to enhance diagnostic ac-
curacy. To the best of our knowledge, this initiative
www.thelancet.com Vol 109 November, 2024
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employs LLMs in detecting cognitive decline from
clinical notes, representing a valuable innovation and
contribution to biomedical informatics.
Methods
Ethics
The study received approval from the MGB Institutional
Review Board (Protocol #:2022P002987), with a waiver
of informed consent for study participants due to the
secondary use of EHR data.

Setting and datasets
This study was conducted at Mass General Brigham
(MGB), a large integrated healthcare system in
Massachusetts, which has established secure, HIPAA-
compliant cloud environments for deploying and eval-
uating LLMs with actual EHR data. Two LLMs were
tested: the proprietary GPT-41 via Microsoft Azure
OpenAI Service API, and the open-source Llama 2
(13B)2 via an Amazon Elastic Compute Cloud (EC2)
instance. Details on the cloud environments are pro-
vided in Supplementary Material Section 1 and
Table S1. We followed the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis
or Diagnosis (TRIPOD) guidelines for designing and
reporting this study.27

We utilised the same definition of cognitive decline
and annotated datasets from a previous study.19 The
determination of cognitive decline aimed to identify
patients at any stage, from Subjective Cognitive Decline
(SCD) to Mild Cognitive Impairment (MCI) to demen-
tia. Cognitive decline can be identified through various
indicators, including the mention of cognitive concerns,
symptoms (e.g., memory loss), diagnoses (e.g., MCI,
Alzheimer’s Disease dementia), cognitive assessments
(e.g., Mini-Cog) — even if patients show normal per-
formance but have documented cognitive concerns —

or cognitive-related therapies or treatments (e.g.,
cognitive-linguistic therapy). Our focus was on pro-
gressive cognitive decline, which is likely to be consis-
tent with or lead to MCI. Cases were considered
negative for cognitive decline if they were less likely to
be progressive (e.g., cognitive function improvement),
transient (e.g., temporary forgetfulness or occasional
memory loss due to medication such as codeine), or
reversible (e.g., cognitive impairment shortly after
events like surgery, injury, or stroke). Additionally,
sections of notes were labelled as negative when records
indicated broader or uncertain signs of cognitive
decline.

To create the annotated dataset, three annotators
received training from subject matter experts to label
sections of clinical notes for cognitive decline. Initially,
each annotator independently labelled 150 sections, with
any conflicts resolved through discussion with the sub-
ject matter experts. In a subsequent dataset of 50
www.thelancet.com Vol 109 November, 2024
sections, the three annotators achieved a high level of
agreement, evidenced by a Fleiss κ value of 0.83.
Following this, additional sections were annotated by
one of the three annotators. Any cases with uncertain
labelling were resolved by consulting the subject matter
experts.

The annotated datasets comprised sections of clinical
notes from the four years prior to the initial diagnosis of
mild cognitive impairment (MCI, ICD-10-CM code
G31.84) in 2019, for patients aged 50 years or older.19

Due to the low positive case rate across the sections,
we used a list of expert-curated keywords (Table 1) to
screen for sections likely indicating cognitive decline.

LLMs and prompting methods
Fig. 1 (areas A and B) illustrates the two-step prompt
engineering process: LLM selection and prompt
improvement. Following previous studies, we divided
the prompt into sections.28 Supplementary Figure S1
shows the prompt structure, which includes a required
task description and optional sections for prompt
augmentation, error analysis-based instructions, and
additional task guidance. We were cautious about the
potential impact of longer prompts, which might over-
whelm the model, negatively affecting performance,
response speed, and cost efficiency.29–31 Therefore, as an
initial step, we evaluated the performance of the two
LLMs using manual template engineering and a smaller
sample size. This approach enabled us to select the
superior model and its corresponding prompt template
for further analysis.32 The selection criterion was

ccuracy = true positive + true negative
all cases , based on Dataset I–S.

Using this metric and guided by the accuracy from
Dataset I–S, we explored whether common prompt
augmentation methods, including both hard prompting
and retrieval augmented generation (RAG)32 and error
analysis-based instructions33 could improve model per-
formance. To ensure control over randomness and
creativity, we adjusted the LLM’s temperature hyper-
parameter to 0, providing a deterministic solution.33

LLMs comparison and selection
We utilised an intuitive manual template engineering
approach to fine-tune the task description and additional
task guidance for each LLM.32 During the iterative
refinement process, we focused on the following task
descriptions for each LLM: 1) identifying evidence of
cognitive decline in clinical notes; 2) displaying which
keywords in the clinical notes informed its judgment on
the assigned task; and 3) requiring LLM responses in
JavaScript Object Notation (JSON) format to facilitate
straightforward parsing. Furthermore, we explored the
possibility of adding additional task guidance to assist
the LLM in its reasoning and enhance performance.
Specifically, we considered two approaches: 1) request-
ing the LLM to provide reasoning for its judgments, and
3
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Model Keywords

Expert Curated Memory, agitat-, alter, alzheimer, attention, cognit-, confus-, decline, delirium, dementia, difficult, disorientation, drive,
evaluat-, exam, forget-, function, impairment, loss, mental, mild, mmse, moca, montreal, mood, neuro-, orientation, psych-,
question, recall, remember, score, sleep, speech, word, worse

XGBoost Cognitive, dementia, forgetful, memory

Attention-Based DNN BNT, FTD, HOH, LBD, MCI, MMSE, Memory, MoCA, abstraction, aforementioned, age, alzheimer, alzheimers, amnestic,
amyloid, aphasa, attention, attentional, auditory, behavioral, category, challenges, clock, cog, cognition, cognitive, dementia,
comprehension, correctly, cube, decline, deficit, deficits, delay, delayed, developmental, died, difficulties, encoding, errors,
executive, expressive, falls, finding, fluency, forgetful, forgetfulness, forgets, forgetting, frailty, functional, functioning, global,
hearing, immediate, impaired, impairment, insight, items, language, lapses, learning, linguistic, moderately, multidomain,
names, naming, neurocognitive, neurodegenerative, perseveration, personality, phonemic, processing, recall, recalling,
remember, remembering, repetition, retrieval, semantic, solving, span, spatial, speech, trails, visual, visuospatial, word, words,
years

GPT4-8K Altered mental status, Aricept, Impaired, MCI, MOCA, altered mental status, anxiety, attention, battery of neuropsychological
tests, cognition, cognitive changes, cognitive concerns, cognitive decline, cognitive deficits, cognitive difficulties, cognitive
impairment, cognitive issues, cognitive symptoms, cognitive-linguistic therapy, concerns, confused, confusion, current level of
cognitive functioning, deficits, delayed recall, delirium, dementia, donepezil, executive function, executive functioning,
forgetful, forgetfulness, language, major neurocognitive disorder, memory, memory complaints, memory concerns, memory
difficulties, memory impairment, memory issues, memory loss, memory problems, mild cognitive impairment, mild dementia,
mild neurocognitive disorder, neurocognitive disorder, neurocognitive status, neurodegenerative process, neuropsych testing,
neuropsychological evaluation, neuropsychological testing, neuropsychological tests, poor safety awareness, problem solving,
processing speed, short term memory loss, vascular dementia, verbal fluency, weakness, word finding difficulties, word-finding
difficulties, working memory

aThe table lists keywords that had a high frequency of appearance in the LLM’s output (i.e., the number of appearances is higher than the average appearance time plus two
standard deviations); keywords whose attention weights (from the attention-based DNN) exceeded the mean weights plus two standard deviations within individual
sections; and keywords with an information gain (XGBoost) higher than the average value plus two standard deviations. We found that keywords identified by AI models
could significantly enrich the expert-curated keyword set. Notably, only GPT-4 identified keywords related to medications for cognitive decline.

Table 1: Keywords contributing to the identification of positive cognitive decline cases, curated by domain experts and extracted from AI models.a
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2) incorporating our definition of cognitive decline
directly into the prompt.

Manual template engineering. We fed each prompt to
GPT-4 and Llama 2 separately. The responses from
these LLM were classified into three categories
(Supplementary Table S2): 1) effective and parseable: the
LLM’s response provides answers to both questions—
whether cognitive decline was identified and which
keywords were used for the decision—using a standard
JSON format; 2) effective but not parseable: the LLM’s
response answers both questions, but does not adhere to
the standard JSON format; 3) not effective: the LLM’s
response fails to answer either of the two questions. We
assessed model effectiveness using 10 random samples
from Dataset I. Our observations indicated that this
sample size was sufficient for a meaningful comparison.
If the effective response rate did not reach 100%, we
manually adjusted the prompt template by paraphrasing
or modifying optional content. This tuning process
continued until no further improvement in the effective
response rate was achieved after three consecutive at-
tempts. Finally, we selected the prompt template that
yielded the highest effective response rate for GPT-4 and
Llama 2 separately.

Performance comparison with manually crafted templa-
tes. To select the optimal LLM, we compared the ac-
curacy of GPT-4 and Llama 2 on Dataset I–S by
providing the LLMs with manually crafted task de-
scriptions and guidance.
Prompt improvement
Prompt augmentation. We explored prompt augmen-
tation to determine if including five examples (five-shot
prompting) enhances performance. We adopted five-
shot prompting due to the maximum token limitation
of GPT-4. Since the selection of examples for few-shot
prompting can significantly affect model perfor-
mance,32,34 we tested four different strategies, including
both hard prompting and RAG. To select the best
strategy, we chose examples from Dataset I-A and
evaluated model performance on Dataset I–S. The four
example selection strategies were: 1) Hard Prompting–
Random Selection: This strategy involves randomly
selecting five samples. 2) Hard Prompting–Targeted
Selection: We selected examples where the model had
previously performed poorly on Dataset I-A, aiming to
directly address its weaknesses. 3) Hard Prompting–K-
Means Clustering-Aided Selection: This strategy in-
volves selecting five samples from that are the centres of
five clusters generated by k-means clustering. We uti-
lised OpenAI’s embedding model, text-embedding-ada-
002,34 as features to ensure the examples are diverse and
representative, which could be crucial for performance
improvement. 4) RAG—dynamic five-shot: For each
case in Dataset I–S, we automatically identified the top
five most similar samples from Dataset I-A using
OpenAI’s embedding model, text-embedding-ada-002,34

based on the k-nearest-neighbours algorithm. This
process enabled us to provide the LLM with five samples
that most closely resemble the current case, thereby
guiding its decision-making.
www.thelancet.com Vol 109 November, 2024

http://www.thelancet.com


Fig. 1: Study Design Overview. The workflow consists of four parts: A) LLM Selection: We fed prompts, which contain task descriptions and may
also include additional task guidance as illustrated in Supplementary Figure S1, to GPT-4 and Llama 2 separately. We used 10 random samples
from Dataset I to select the most suitable template for each LLM. During this process, if the effective response rate (i.e., the rate at which the
response answered the questions in the prompt) was not 100%, we manually adjusted the template for each model. If the effective response
rate did not improve after three consecutive attempts, we ceased tuning and used the template that led to the highest effective response rate.
We then selected the best LLM based on their accuracy on Dataset I-S. B) Prompt Improvement: This step includes two sub-steps: prompt
augmentation and adding error analysis-based instructions. During prompt augmentation, we tested whether five-shot prompting could
improve accuracy. We then assessed whether incorporating instructions following an error analysis of the LLM’s output on Dataset I–S could
enhance accuracy. C) Model Evaluation: We evaluated the selected LLM and two traditional machine learning models. We also tested the
performance of an ensemble model, which took the majority vote of the three models as the predictive label. D) Interpretation and Error
Analysis: For interpretation, we examined and compared keywords used by each model for prediction, in conjunction with those curated by
domain experts. Lastly, we analysed and compared errors made by each model.

Articles
Error analysis-based instructions. We tested whether
incorporating error analysis-based instruction into the
prompt could improve performance.33 To achieve this,
we first conducted an error analysis of the LLM on
www.thelancet.com Vol 109 November, 2024
Dataset I–S. Subsequently, we added a paragraph
describing common errors that the LLM made and
instructed it to pay attention to those errors when
generating its response.
5
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Baseline machine learning models
We compared the performance of the LLM with two
baseline machine learning models developed from our
previous study: XGBoost35 and a four-layer attention-
based deep neural network (DNN),7,36 which incorpo-
rated elements of a convolutional neural network, a
bidirectional long-short term memory (LSTM) network,
and an attention model. Baseline models’ hyper-
parameters were optimised using grid-search and 5-fold
cross-validation on Dataset I. These two models were
the top performers compared to other traditional models
in identifying cognitive decline in clinical notes.19

Ensemble model
Finally, we investigated whether an ensemble model
that combines predictions from both the LLM and
traditional machine learning models could achieve bet-
ter performance. The ensemble learning, which involves
combining several different predictions from various
models to formulate the final prediction, has proven to
be an effective approach for enhancing performance.37,38

To create the ensemble model, we determined the final
label using a majority vote method. Specifically, if two or
more models (the LLM, the attention-based DNN, and
XGBoost) identified cognitive decline, the final label was
assigned as cognitive decline; otherwise, it was labelled
as no cognitive decline. The high diversity of the models
included may enable the ensemble to correct errors
made by individual models.39

Model evaluation
We evaluated and compared the selected LLM, tradi-
tional models and the ensemble model on Dataset II
using standard metrics: precision/PPV =

true positive
true positive+false positive, recall/sensitivity = true positive

true positive+false negative,

f 1 − score = 2×precision×recall
precision+recall , specificity = true negative

true negative+false positive,

and NPV = true negative
true negative+false negative. We used 0.5 as the

cutoff point for calculating precision, recall, and F1
score for the baseline models. Additionally, we
employed bootstrap resampling on Dataset II to obtain
confidence intervals for all metrics and used paired t-
tests for statistical analysis, a widely-used and effective
approach for model comparison.40

Interpretation
Regarding interpretation, we listed keywords from the
LLM’s output that appeared more frequently than the
average appearance time plus two standard deviations.
We also identified keywords whose deep learning
attention weights exceeded the mean weights by more
than two standard deviations within individual sections,
and keywords with an XGBoost information gain higher
than the average value plus two standard deviations.
Additionally, we included expert-curated keywords
developed in our previous study as a reference.19
Error analysis
We conducted two levels of error analyses. The first
analysis assessed the selected LLM using various
prompting strategies, including zero-shot, the best few-
shot method, and the prompt with error analysis-based
instructions. The second analysis evaluated the best-
performing LLM with its optimal prompt, alongside
the attention-based DNN and XGBoost. Errors from
each model, encompassing both positive and negative
cases, were analysed and discussed by two biomedical
informaticians and a physician. A Venn diagram was
used to quantify and visualise the unique and over-
lapping errors made by each model.

Role of funders
NIH-NIA R44AG081006: This grant provided financial
support for the article processing charges, the procure-
ment of computational resources necessary for the study
and funded researchers to conduct the research. NIH-
NLM 1R01LM014239 and NIH-NIA R01AG080429:
These grants supported the researchers involved in
completing the study.

The funding sources had no role in the design of the
study, data collection, analysis, interpretation, writing of
the manuscript, or the decision to submit it for publi-
cation. The authors were not paid by any pharmaceutical
company or agency to write this article. As the corre-
sponding author, I confirm that all authors had full ac-
cess to all data in the study and accept responsibility for
the decision to submit the manuscript for publication.
Results
A total of 2166 distinct patients were included. Dataset
characteristics are illustrated in Table 2. Dataset I, con-
sisting of 4949 keyword-filtered sections from 1969 pa-
tients (1046 [53.1%] women; mean [SD] age, 76.0 [13.3]
years), was used to train two baseline models. For prompt
development and LLM selection, 200 random samples
from Dataset I (Dataset I-S) were used for performance
assessment, while the remaining samples (Dataset I-A)
were utilised for sample selection in prompt augmenta-
tion. Dataset II, which includes 1996 random sections
not subjected to keyword filtering from 1161 patients
(619 [53.3%] women; mean [SD] age, 76.5 [10.2] years),
served for final testing. The average length of the Dataset
I sections was 850 characters (range: 26–9393), and that
of the Dataset II sections was 464 characters (range:
26–14740). Dataset I contained 29.4% positive cases and
Dataset II contained 3.5% positive cases. In addition, the
mean time to diagnosis in Dataset I was 1.5 years with a
standard deviation (SD) of 1.4 years, while in Dataset II,
the mean was 1.9 years with an SD of 1.4 years.

LLM selection and prompt selection
The effective response rate varied for each LLM using
five different prompt templates (Fig. 2A). For GPT-4,
www.thelancet.com Vol 109 November, 2024
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Dataset Description Mean (range),
characters

Positive
Rate

Dataset I 4949 note sections filtered
with cognitive decline-
related keywords

850 (26–9323) 29.4%

Dataset
I-A

A random subset of
Dataset I, containing 4749
samples

848.8 (26–9323) 29.6%

Dataset
I–S

A random subset of
Dataset I, comprising 200
samples that do not
overlap with Dataset I-A

870.7 (34–8353) 23.5%

Dataset
II

1996 random note sections
without keyword filtering

464 (26–14740) 3.5%

Table 2: Dataset characteristics.

Articles
Template 1, which includes a task description section
and additional task guidance section as shown in
Supplementary Figure S1, achieved a 100% effective
response rate. Llama 2 achieved its highest effectiveness
at 80% when using Template 2, which only includes the
task description section. GPT-4 and Llama 2, with their
most effective prompts, achieved accuracies of 86.5%
and 52.0% respectively on Dataset I-S. We therefore
chose GPT-4 for subsequent analysis.

Prompt improvement results on Dataset I-S show
that the best prompt augmentation approach (Template
6) was RAG—dynamic five-shot, which had an 85%
accuracy. However, adding error analysis-based in-
structions (Template 7) surpassed this, reaching an ac-
curacy of 93%. Therefore, we decided to adopt error
analysis-based instructions as our prompting strategy
for subsequent analyses.

Performance evaluation
As shown in Fig. 2B and Supplementary Table S9, GPT-
4 achieved a precision of 71.7% [95% CI: 61.7%–80.6%],
recall of 91.4% [95% CI: 84.1%–97.2%], F1 score of
80.3% [95% CI: 72.6%–86.7%], specificity of 98.7%
[95% CI: 98.1%–99.2%], and NPV of 99.7% [95% CI:
99.4%–99.9%]. Optimized hyperparameters for the
attention-based DNN and XGBoost models are detailed
in Supplementary Table S8. The attention-based DNN
achieved a precision of 77.8% [95% CI: 68.4%–86.3%],
recall of 92.7% [95% CI: 85.9%–98.3%], F1 score of
84.5% [95% CI: 77.9%–90.5%], specificity of 99.0%
[95% CI: 98.6%–99.5%], and NPV of 99.7% [95% CI:
99.5%–99.9%]. The XGBoost model achieved a preci-
sion of 79.3% [95% CI: 70.4%–87.7%], recall of 92.7%
[95% CI: 86.3%–98.3%], F1 score of 85.4% [95% CI:
79.1%–91.3%], specificity of 99.1% [95% CI: 98.7%–

99.5%], and NPV of 99.7% [95% CI: 99.5%–99.9%].
Notably, the ensemble model significantly enhanced

overall performance, achieving a precision of 90.2%
[95% CI: 81.9%–96.8%], recall of 94.2% [95% CI:
87.9%–98.7%], F1 score of 92.1% [95% CI: 86.8%–
www.thelancet.com Vol 109 November, 2024
96.4%], specificity of 99.6% [95% CI: 99.3%–99.9%], and
NPV of 99.8% [95% CI: 99.6%–99.9%]. Statistical anal-
ysis confirmed that the ensemble model outperformed
all individual models across all evaluation metrics with
statistical significance (p < 0.01). Furthermore, when
tested on notes from patients present only in Dataset II,
the ensemble model achieved 100% accuracy, out-
performing all individual models (Supplementary
Table S10).

Interpretation
Table 1 contains keywords identified through expert
curation and exported by GPT-4, the attention-based
DNN, and XGBoost. These keywords encompass a
range of topics, including memory-related issues such as
recall and forgetfulness, cognitive impairments, and de-
mentia, with terms like “dementia” and "Alzheimer’s."
They also cover evaluation and assessment methods,
referencing tools like the MoCA and MMSE. Compared
to traditional AI models and expert-selected keywords,
GPT-4 highlighted specific treatment options, notably
“Aricept” and “donepezil,” (Supplementary Table S9)
which are important in managing dementia and Alz-
heimer’s disease. Furthermore, GPT-4 explicitly identi-
fied specific diagnoses or conditions more than other
models, with terms such as “mild neurocognitive disor-
der,” “major neurocognitive disorder,” and “vascular de-
mentia.” Additionally, GPT-4 exported keywords
regarding the emotional and psychological effects of
cognitive disorders, such as “anxiety,” thus addressing
aspects sometimes overlooked by other models.

Error analysis
As illustrated in Supplementary Figure S2, when using
different prompting strategies with GPT-4, some errors
may be mitigated, while new ones could emerge that
were not previously observed. Notably, adding error
analysis-based instructions to the prompt yielded the
best performance, with only 31 wrongly predicted cases
in Dataset II. In contrast, the error profiles of GPT-4,
attention-based DNN, and XGBoost exhibited much
higher diversity (Fig. 3). We found that 63 cases were
wrongly predicted by one or more models. GPT-4
accounted for 31 incorrect predictions, the attention-
based DNN made 23 wrong predictions, and XGBoost
was responsible for 22 incorrect predictions. However,
only 2 (3.2%) cases were wrongly predicted by all
models. Four errors were common between GPT-4 and
the attention-based DNN, three were common between
GPT-4 and XGBoost, and eight were shared between the
attention-based DNN and XGBoost.

All models were susceptible to misinterpreting signs
or symptoms as indicative of unrelated clinical condi-
tions. GPT-4 excelled in handling ambiguous terms and
interpreting nuanced information, a frequent challenge
for traditional AI. Unlike traditional AI, GPT-4 was not
confused by negations and contextual details. However,
7
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Fig. 2: LLM Selection and Model Evaluation Results Summary. Part (A) highlights the LLM selection results. During the prompt template se-
lection, Template 1 was selected for the GPT-4 model due to a 100% effective response rate; Template 2 was selected for the Llama 2 model as
the effective response rate (80%) did not improve after three tuning attempts. Subsequently, we compared the two combinations with 200
samples from Dataset I-S and found that GPT-4 and Template 1 combination achieved significantly better accuracy (86.0%). Part (B) of the
figure shows prompt improvement and final model evaluation results. This figure only shows averaged values for model evaluation, detailed
confidence interval information is illustrated in Supplementary Table S9. We discovered that five-shot prompting did not lead to improved
performance; however, adding error analysis-based instructions (i.e., GPT-4 and Template 7 combination) increased the accuracy to 93% on Dataset
I–S. Consequently, we opted to use Template 7 as the prompt template and GPT-4 as the LLM. In tests, we evaluated the performance of the
XGBoost, the attention-based DNN, and the LLM. We found that XGBoost performed the best: precision—79.3%, recall—92.7%, F1 score—85.4%,
specificity—99.1%, NPV: 99.7%. Notably, after combining the three models using a majority vote, the ensemble model demonstrated significantly
improved performance: precision—90.2% (an 10.9% improvement), recall—94.2% (a 1.5% improvement), F1 score—92.1% (a 6.7% improvement),
specificity—99.6% (a 0.5% improvement), NPV—99.8% (0.1% improvement).
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it could sometimes overinterpret nuanced information
or be overly conservative, failing to recognise cognitive
decline despite strong evidence. It might also overlook
underlying causes of clinical events like treatments or
visits related to cognitive decline. Both GPT-4 and
attention-based DNNs occasionally misread clinical
testing results.
Discussion
Recently, LLMs have demonstrated remarkable perfor-
mance on various NLP tasks, yet their ability to analyse
clinical notes from EHR data remains underexplored,
partly due to data privacy concerns. In this study, we
established HIPAA-compliant secure environments for
LLMs and used cognitive decline identification as a use
case to test LLMs’ capabilities in clinical note classifi-
cation, thereby enhancing diagnostic tasks. Our contri-
butions are threefold: 1) We set up a secure cloud
environment for GPT-4 and tested its ability to identify
cognitive decline from clinical notes in EHR data; 2) We
introduced a method for implementing NLP models for
cognitive decline identification, achieving state-of-the-art
performance with a significant lead over existing
www.thelancet.com Vol 109 November, 2024
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Fig. 3: Venn Diagram Highlighting Unique and Overlapping Mistakes Made by Different Models. √: correct prediction; X: incorrect prediction.
Some important findings include: 1) All models were susceptible to misinterpreting signs or symptoms as indicative of unrelated clinical
conditions. 2) GPT-4 excelled in handling ambiguous terms and interpreting nuanced information, challenges that traditional AI frequently
encounters. 3) Unlike traditional models, GPT-4 handles negations and contextual details more efficiently. 4) However, GPT-4 could sometimes
overinterpret nuanced information or be overly conservative, failing to recognise whether a patient has cognitive decline despite strong ev-
idence. 5) GPT-4 might also overlook certain medical domain knowledge, such as treatments or visits related to cognitive decline. 6) Both GPT-
4 and attention-based DNNs occasionally misread clinical testing results, highlighting an opportunity for further improvement.

Articles
methods; 3) We discovered that although existing LLMs
may not outperform traditional AI methods trained on a
local medical dataset, their error profile differs
distinctly, underscoring the significant potential of
combining LLM with traditional AI models. The end
goal of our proposed approach is to employ cutting-edge
AI techniques to enable physicians to detect early and
flag patients with “high” risk on the EHR system accu-
rately so that they can start acting on preventive
treatments.

Our research demonstrated that prompt engineering
using error analysis-based instructions significantly
enhanced performance compared to zero-shot and
prompt augmentation approaches, as it directly targeted
the LLM’s weaknesses. Nevertheless, the LLM did not
surpass traditional AI in identifying cognitive decline,
www.thelancet.com Vol 109 November, 2024
primarily because it was not specifically trained for this
task.9,41 While the LLM can generate a range of re-
sponses, it is prone to producing plausible but incorrect
hallucinations. Nonetheless, it is valuable for its ability
to operate without task-specific training, thereby com-
plementing traditional AI, which requires specific
training but often does not suffer from hallucinations.42

In terms of interpretation, the LLM identified keywords
overlooked by experts and traditional AI models, such as
medications related to cognitive decline. Notably, we
observed LLM identified medications for AD/ADRD
prior to the coding of MCI, indicating LLMs could
function as a decision-support tool, flagging notes that
imply cognitive decline and alerting clinicians to inves-
tigate further, even if the diagnosis has not been
explicitly established in the records. Error analysis
9
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revealed that the LLM demonstrated superior handling
of ambiguous or contextually complex information due
to its transformer architecture.3,4 However, LLMs mis-
interpreted or overlooked certain domain-specific med-
ical tests and treatments. Future research should explore
the integration of the LLM with smaller, localised
models and knowledge bases to enhance performance
on specific tasks.

Our proposed method and results hold the potential
for meaningful integration into clinical practice. By
incorporating accurate predictions derived from clinical
note sections, we can enhance patient-level diagnosis
through the identification of trends and patterns indic-
ative of cognitive decline, as observed across sequential
patient notes over time. This approach allows for a dy-
namic and continuous assessment of a patient’s cogni-
tive trajectory, facilitating early detection of subtle
changes that may precede a formal diagnosis. Moreover,
our method can be embedded within a clinical decision
support system, which would synergise predictions
from note sections with other relevant patient data, such
as magnetic resonance imaging (MRI) results, labora-
tory findings, neurologic tests, and genetic information.
This multimodal approach offers clinicians a more ho-
listic and precise evaluation of a patient’s cognitive sta-
tus, enabling the detection of cognitive decline at earlier
stages and guiding more timely and informed clinical
decisions. For instance, the system could prompt clini-
cians to recommend specific cognitive assessments,
adjust treatment plans, or initiate early interventions,
ultimately improving patient outcomes through per-
sonalised and proactive care.

Although our study has several strengths, such as
employing LLMs on unstructured EHR data for detect-
ing cognitive decline, the results should be interpreted
considering certain limitations. The LLMs used may not
represent the most recent advancements (e.g., the
recently released Llama 3 model) due to the rapid evo-
lution of LLM technologies. While utilising LLMs with a
larger number of parameters (e.g., Llama 2–70 billion)
may lead to better performance, this improvement
comes with trade-offs, including higher computational
demands and greater memory needs, posing challenges
due to resource constraints. Additionally, our data are
record-based and not patient-based (i.e., longitudinal),
thus, the developed model may struggle to distinguish
between reversible and progressive cognitive decline,
and it remains unclear if patients recovered later based
solely on a note from one time point. Patients obtained
from our patient identification method (ICD-10 of
G31.84) might not be confirmed MCI cases. Therefore,
developing an LLM-based early warning system for
cognitive decline using longitudinal data would be a
valuable direction for future research. Additionally,
exploring the relationship between predictive accuracy
and time to diagnosis would be an interesting direction
for future research. Furthermore, our training data
(Dataset I) and testing data (Dataset II) were not split
based on patients. Although the evaluation of the
ensemble model on 267 notes from 196 patients exclu-
sively present in Dataset II demonstrated 100% accuracy
and outperformed all individual models, a larger testing
dataset that includes patients not found in Dataset I is
needed in future studies to provide a more robust
evaluation.
Conclusion
This study utilised LLMs within HIPAA-compliant
cloud environments, leveraging real EHR notes to
detect cognitive decline. Our findings indicate that
LLMs and traditional models exhibit diverse error pro-
files. The ensemble of LLMs and locally trained machine
learning models on EHR data was found to be com-
plementary, significantly enhancing performance and
improving diagnostic accuracy. Future research could
investigate methods for incorporating domain-specific
medical knowledge and data to enhance the capabil-
ities of LLMs in healthcare-related tasks.
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