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Introduction

e Large Language Models (LLMs) can reason well, plan
steps, and understand goals.

e But they're trained only on text — not on how
environments actually behave.

e So when we ask them to act as agents, they often
produce actions that “sound right” but don’t work in
the real environment.

e This gap between knowing and doing is the core
problem we explore.

Large Language Model?
A deep learning model trained on
vast text data to understand and
generate human-like language. It
can summarize, translate, answer
questions, and create text.
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Environment

e To understand this gap more clearly, let’s look at the environment!

e Overcooked is a simple grid-based kitchen environment where an agent

follows a sequence of steps to prepare dishes.
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The agent moves, picks up ingredients,
chops, cooks, and serves.

Actions only work if the environment
allows them.

Clear, strict rules make mistakes easy
to detect.

This makes Overcooked a perfect setting to show how LLMs break rules and what we mean by misalignment.
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Action Misalignment

e Action Misalignment occurs when the LLM proposes _} \ ‘ | IOI_

actions that sound correct but cannot be executed in the
environment.

e Examples from Overcooked:
o Suggesting “pick up cucumber” even though cucumber doesn’t exist
o Trying to place lettuce on a cutting board already holding tomato

o Actions break environment rules despite being linguistically reasonable

e These mistakes show that language-based reasoning does
not automatically translate into valid environment actions.
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Only tomato, lettuce and onion
are provided in the game.

LLMs may choose to pick up
additional ingredients, such as
cucumber and pepper to cook
the dish.

ml Arizona State
University



Learning Misalignment

e lLearning Misalignment arises because LLMs are trained | | | | | |
for next-token prediction, not reward-based improvement! :ﬁhg;

o They maximize likelihood of text, not expected reward

o They lack trial-and-error adaptation

/ Q
e Key issues: -
| |

o They do not improve their strategies across episodes

o RL settings require feedback-driven learning, which LLMs are not thI;Msle%tl:g: tgi atghznt ;ﬁttrnué
board, which already contains
tomato, without knowing that
each cutting board can only
contain one item at a time.

naturally trained for.

e As a result, LLMs can produce fluent actions but fail to
learn effective long-horizon behaviors.
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Methodology

e With the misalignment problems clear, our goal is to create a method where:
o LLM actions are grounded in valid environment transitions.
o The model can learn from rewards and feedback.
o Policies become more consistent over episodes.
o The LLM keeps its language abilities while improving its decision-making

o The whole system becomes more “agent-like” instead of just “text-like”

e To achieve these goals, the True knoWledge cOmeS frOM practic
(TWOSOME) framework uses an RL-based approach to align LLMs with

embodied environments.
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LLM Prompt Design Principles

e Cohesion: Ensure observation and action prompts use linking phrases such
as “you should”.

e Articles Sensitivity: Include proper articles (e.g., “pick up the tomato”).

e Context Reinforcement: Repeat key objects/goals to bias action probabilities.

e Context Adaptation: Modify phrasing based on state (e.g., “put the tomato on
the plate” instead of “pick up the tomato” when the object is already held).
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Valid Policy Generation

Problem: LLMs generate invalid actions that

. . . Valid Action Selection
violate environment constraints.

Solution : Instead of letting the LLM freely State: Tomato Visible

generate an action, TWOSOME evaluates the log-
likelihood of each valid action prompt and
normalizes these scores to form the policy.

Ny,
Proken(a|$) =HP(w§‘7|s,wi"?...:wf_l) n =
i=1
log Pioken(ak|: =
P(ak|s) = exp(log tOkC’-n(aklg)) Teleport I

ZaeA exp(log Pioken(als))
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Observation Prompt

TWOSOME Policy Generator

0.4

You see a tomato, pick up B e i ol
—> a bowl and a cutting board.
To make a tomato salad
’ ak h b 1 .
you should first ________ . [he o 6.3
LLM —| move to the cutting | board 0.1
Action Prompt
pick up the tomato / ch op the tom ato 0.15
take the b9wl
move to the cutting board serve | the d ek 0.05
chop the tomato
serve the dish Token probability Policy
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Action Prompt Normalization

Problem: Longer prompts receive smaller joint probabilities, creating

bias toward shorter actions.

Solution: Token and word normalization solve this issue by dividing
the log-probability to create a balance. Word normalization is preferred
because it treats multi-token words as single units, preventing unfair

penalization of longer prompts due to tokenization quirks.

X Problem: Raw Probabilities

Longer prompts get lower joint probabilities
“pick up” — (-0.21)+(-015) = -0.36
“place tomato on plate” — (011 +(-0.25) «

+ (-019)

1. Bias against longer worded actions!

012)

log Poken(@r|S

log Pl (ay]) = 25 k(2613
k
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log PN (as) = -5 en( 012
k

v Solution: Word Normalization

Normalize by number of words in action
”piCk Up” 3 » -036/2=-018
“place tomato on plate” > -0.67/4 = -0.167

v Fair & stable comparison
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Parameter-Efficient Architecture

Aspect Actor (Policy) Critic (Value)
Base LLaMA-7B + LoRA Multilayer Perceptron (MLP)
Architecture
(Iow-rar?kagl;cro:n?p;lgition on 3layer MLP
Rank/Layers L Input(1024) — Hidden(512) —
Query/Value projection
| Output(1)
matrix)
Trainable .
LoRA adapters (~4.2M) All MLP weights
Parts
Pre-trained Yes (LLaMA frozen) No (learns from scratch)
Learning Rate Low (~3e-5) High (~1e-3)
Output Policy mi(als) Value V(s)
Role in RL Selects actions Estimates advantage

At =r_t+ yV(s_{t+1}) - V(s_t)

( N
value action
MLP
LLaMA-7B
(frozen) Lok
1
obs prompt & reward
t )

Env

Key Benefit: The frozen LLaMA-7B backbone (7B parameters) preserves language knowledge

while LoRA adapters (~4.2M parameters, 94% reduction) enable efficient task-specific fine-tuning.
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Complete Pipeline

1) Environment observation is converted into an observation prompt

2) All valid actions mapped to action prompts (e.g. “Action: move_up”)
3) LLM + LoRA computes joint token probabilities for each action

4) Select and execute the highest-probability valid action

5) Environment returns next state + reward

6) Update LoRA (actor) + MLP critic (via an RL Algorithm like PPO)

/) Loop continues until policy aligns with environment dynamics
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Results and Observations
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(a) Comparison of performance among finetuned TWOSOME.
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(b) Comparison of performance among TWOSOME with word normalization and baselines.
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Results and Observations

Task Generalization

1.01 BN TWOSOME without Fintuning
08 B TWOSOME with Word Normalization
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Tasks

e VirtualHome environment

e TWOSOME agents that were originally trained on the Food Preparation and Entertainment tasks
within VirtualHome are evaluated on eight new VirtualHome tasks.

e This setting checks whether the agent can transfer what it learned in one VirtualHome scenario to

others without retraining.
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Limitations of TWOSOME

Open-World Generalization
® Moving beyond scripted environments like Overcooked and VirtualHome to dynamic, real-world scenarios.
Computationally Expensive and Inefficient

® Every decision step requires the LLM to score all possible valid actions, leading to high latency and GPU
demand.

® Real-time or large-scale deployment remains difficult due to slow inference speeds.
Limited Action Space
® The framework depends on a predefined list of macro-actions.

® This restricts adaptability in more open-ended or real-world environments.
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Limitations of TWOSOME

Prompt Sensitivity

® Performance varies greatly with prompt phrasing, grammar, and structure.

® Lack of robustness to natural language variability limits reliability.

Data and Training Cost

® PPO fine-tuning with LoRA adapters is sample-efficient but computationally heavy.

® Requires significant resources and time for each environment.
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THANK YOU !

m Arizona State
University



	Slide 1: True knowledge comes from practice:  Aligning large language models with embodied environments via reinforcement learning
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: LLM Prompt Design Principles
	Slide 8: Valid Policy Generation
	Slide 9: TWOSOME Policy Generator
	Slide 10: Action Prompt Normalization
	Slide 11: Parameter-Efficient Architecture
	Slide 12: Complete Pipeline
	Slide 13: Results and Observations
	Slide 14: Results and Observations
	Slide 15: Limitations of TWOSOME
	Slide 16: Limitations of TWOSOME
	Slide 17

