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Whatis Type 1 Diabetes (T1D)?

« T1D is a lifelong autoimmune condition — the body
can’t produce insulin.

 Requires constant self-management through blood
sugar checks and insulin dosing.

* It is usually diagnosed in childhood or early adulthood
and requires lifelong care. ~

« Without proper control, it can lead to serious health ‘ ,
Issues, like heart and kidney complications. 4
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The Global Burden of T1D
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Toward Automated Diabetes Management

* Advances in diabetes technology have improved care.
* One example is the Continuous Glucose Monitor (CGM).
A CGM has a tiny sensor under the skin, often on the arm or stomach.

* |t sends data to a screen, like on a phone, so people can see their levels.

Dexcom G6 interstitial
glucose sensor

t:Slim X2™ insulin
pump containing the ™=
control algorithm
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Why We Need Real-World T1D Data?

* But to truly personalize treatment, we need data-driven strategies

 Many emerging methods—Ilike: . X )
- Therapy optimization l; Process l;
|—>| Input ¢ Output 1
+ Digital twin modeling | — :
| :
| |
|

« Counterfactual analysis

rely on machine learning and Al

* These methods need high-quality, real-world data to be effective
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Existing Datasets

* Most publicly available T1D datasets (e.g., OhioT1DM) are:
« Simulated or synthetic
- Small-scale (few patients, short durations)
 Lacking important behavioral context (device mode, carb intakes, etc.)

* This limits:
» Generalizability of models
« Clinical applicability

* Progress in Al-driven diabetes management

IEEE-EMBS BSN’25
Los Angeles, CA, USA



Introducing AZT1D Dataset

AZT1D dataset was created to fill a critical gap in T1D research.

Enables personalized, Al-driven analysis and modeling.

Developed in collaboration with the Mayo Clinic.

Includes data from 25 individuals with T1D.

Study conducted in Scottsdale, AZ (Dec 2023 — Apr 2024)

Scan to Download!
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Introducing AZT1D Dataset

Purely
observational
Collected during

routine care
No intervention

Dexcom G6 Pro
Tandem t:slim X2

12 Males
e 13 Females

MONTHS

Glucose Values
5-min intervals

~320k entries
~26.7k hours total
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Data Processing

 Tandem pump data came in two formats:
— CSV (glucose, bolus, carbs)

— PDF (basal rates, device modes)
« Data integration was not straightforward due to format differences.
« Timestamps of carb and bolus events were aligned with glucose readings.

« Basal and mode data were extracted from PDFs using OCR-based methods.
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Data Processing
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Dataset Features

« Each participant’s data includes time-aligned records across several key variables:

e EventDateTime : Timestamp of each record
 DeviceMode : Regular, sleep, or exercise

 BolusType : Standard, correction, or automatic

e Basal : Hourly basal insulin delivery (units)

» CorrectionDelivered : Portion of insulin for correction
e TotalBolusInsulinDelivered : Total bolus dose (units)
» FoodDelivered : Portion of insulin for food coverage

e CarbSize : Meal carbohydrate amount (grams)

» CGM : Blood glucose level (mg/dL)
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Daily Records Example
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Use Cases

« Its structure makes it ideal for building and testing data-driven tools in T1D care.

* For example:

* Blood glucose prediction using real-world time-series data

Personalized treatment recommendation based on daily patterns

Counterfactual reasoning to explore “what-if’ scenarios

Evaluation of automated insulin delivery (AID) systems

Temporal analysis of insulin, meals, and glucose trends
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Use Case: GLIMMER

GLIMMER: Glucose Level Indicator Model with Modified Error Rate.

Developed a machine learning model for blood glucose forecasting.

Introduced a custom loss to prioritize dysglycemic regions.

Tuned loss weights using a genetic algorithm.

* Trained on multi-week real-world data from AZT1D.

* Achieved 25% lower RMSE, 31% lower MAE than baseline.

Scan to View!
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Use Case: GLIMMER
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Use Case: GlyMan

« GlyMan: Glycemic management using patient-centric
counterfactuals.

 Built a model to generate personalized “what-if” suggestions.

* Aimed to help reduce hyperglycemia through behavior changes.

 Learned patterns from real-world data in AZT1D.

Scan to View!

« Considered patient constraints like minimal effort or disruption.

* Achieved 76.6% valid explanations, 86% effective
recommendations.
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Use Case: GlyMan
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Future Work

* We aim to expand the dataset to include up to 100 patients
and release AZT1D v2.

x4 Bigger

T
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Ongoing Project: ExActHealth

« ExActHealth: Advanced Multimodal Dataset for T1D Research.
« Combines mobile app and smartwatch data.

* Includes 20 patients, monitored for one month.

* Logs detailed food intake: time, portion, and macronutrients.
« Captures food images for each meal/snack.

* Tracks heart rate, step count, and sleep stages.

« Designed to study the impact of lifestyle on glucose control.

IEEE-EMBS BSN’25
Los Angeles, CA, USA



Ongoing Project: ExActHealth
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