
Stress Detection using Context-Aware
Sensor Fusion from Wearable Devices

IEEE Internet of Things Journal, , 2023
Cited by: 53

Presenter: Nooshin Taheri
10/8/2025

Background & Limitations of Existing Stress
Detection Methods
• Wearable health devices are increasingly used for stress detection, relying on multiple physiological sensors

(e.g., ECG, EDA, EMG, BVP, TEMP).

• Stress detection methods face two major challenges:
• Lack of robustness – sensor measurements are noisy and degrade model performance.
• Lack of adaptation – static model architectures cannot adjust to changing sensing conditions (the noise context).

• Stress classification techniques:
• Deep learning models can capture temporal patterns in sensor data.
• Classical machine learning models are more commonly used in stress detection.
• Classical models are simpler and less computationally demanding, making them better suited for on-device

deployment in wearable systems.

• Limited coverage: Single sensor modalities capture only part of the stress response.
• Static fusion: Combining all sensors without context can worsen accuracy.

• Gap: A context-aware, adaptive fusion framework is needed to dynamically select reliable sensors
based on their noise context.

Why Context-Aware Sensor Fusion Is Needed

The context of noise on sensors varies depending on the location of the wearable device.

• Sensor noise varies by device location → Motion affects wrist sensors, while muscle contractions affect chest sensors.

• Blind fusion can mislead the model

 ➜ A context-aware fusion approach is needed to adapt to changing noise conditions.

Contributions

• Introduced SELF-CARE
• a generalized selective sensor fusion framework for stress detection from

wearable devices.

• Proposed context identification
• models the noise context (motion for wrist, muscle contraction for chest)

to adaptively select reliable sensors.

• Developed a novel late-fusion method
• uses a Kalman filter to incorporate temporal dynamics and improve

classification stability.

Problem Formulation – Need for Adaptive
Sensor Selection
• The noise context varies by device location —

wrist sensors are affected by motion, chest sensors by muscle contractions.
• Fixed (static) models treat all sensors equally → performance drops when some signals are

noisy.
• The system must adaptively choose which sensors to fuse depending on the current

context.
• SELF-CARE formulates stress detection as a context-driven adaptive fusion problem,

rather than a static classification task.
• Introduces two key modules:

• Gating model (π): detects the current noise context from ACC (wrist) or EMG (chest).
• Selection mechanism (ρ): picks the best subset of models/sensors (φ*).

• Goal: maximize stress detection accuracy by using only the most reliable sensors at each
moment.

Overview of the SELF-CARE
Framework

• Goal: Detect stress adaptively by selecting the most reliable sensors
based on noise context.
• Step 1 – Preprocessing:

•Filter raw signals to reduce noise and align data across sensors.
• Step 2 – Context Identification:

•Extract features from motion (ACC) or muscle activity (EMG).
•Gating model decides which sensor combinations (branches) to
use.

• Step 3 – Classification:
• Each branch (set of sensors) has its own ML classifier (Random
Forest / AdaBoost).

• Step 4 – Fusion via Kalman Filter:
•Combines outputs from selected branches.
•Incorporates temporal dynamics for smoother, more accurate
stress prediction.

Preprocessing –
Signal Preparation

• Removes noise from raw physiological signals using filters (e.g.,
Butterworth, FIR, Savitzky-Golay).
• Standardizes data collected from multiple sensors (chest and wrist).
• Segments signals into fixed time windows (e.g., 60 s with 5 s overlap)
for model input.
• Enhances signal quality so later modules can extract meaningful
physiological features.
• Ensures all sensors are time-aligned for accurate feature correlation
and fusion.

Context
Identification

• Goal: Detect the current noise context (motion or
muscle activity) to decide which sensors are reliable.

• Input: Raw sensor signals (ACC for wrist, EMG for
chest).

• Output: The best sensor branch(es) to use for stress
detection.

•Main Components:
1.Feature Extraction
2.Gating Model (π)
3.Performance–Computation Trade-off (δ)
4.Early Fusion (ψ)

Context
Identification

1. Feature Extraction
• Extracts ACC (wrist) or EMG (chest) features to capture motion or muscle

activity.
• Models the noise context, not stress itself.
• Provides input to the gating model for sensor selection.
• Other sensor features are extracted after the gating decision.

2. Gating Model (π)
• Decision Tree predicts which sensor branch is most reliable.
• Uses ACC/EMG features as input.
• Wrist: chooses among 3 Random Forest branches (WB1, WB2, WB3).
• Chest: chooses among 5 AdaBoost branches (CB1, CB12, CB14, CB24, and CB27

for 3-class; CB5, CB7, CB9, CB13, and CB20for 2-class).

• Lightweight & adaptive — enables real-time context-aware selection.

Context
Identification

3. Performance–Computation Trade-off (δ)
• Balances accuracy vs. device efficiency.
• δ ∈ [0, 1] determines how many branches are selected:

• δ = 0: only the top-probability branch (fast, low
power).

• Higher δ: more branches included (higher accuracy,
more computation).

4. Early Fusion (ψ)
• For each selected branch, features from its sensors are

concatenated into a single vector.
• These fused features are then passed to their branch

classifiers (e.g., Random Forest, AdaBoost).

Branch Classifiers –
Specialized Sensor
Models

• Each branch (B₁, B₂, …, Bₙ) is a separate classifier trained on a
specific sensor combination.

• Wrist devices: use Random Forest classifiers.

• Chest devices: use AdaBoost classifiers.

• Each branch predicts the stress class (baseline/ stress/ amusement).

• The gating model activates one or more branches based on the
detected context.

• These outputs are later fused using the Kalman filter for the final
stress prediction.

Late Fusion –
Kalman Filter

• Combines outputs from all selected branch classifiers.

• Uses Kalman filtering to model temporal dynamics —
considers how stress levels evolve over time.

• Performs prediction and measurement update steps to
refine class probabilities.

• Applies thresholding to handle noisy or uncertain
predictions.

• Produces a final fused classification that is smoother and
more accurate than simple voting.

Kalman Filter

• Used when we have noisy or uncertain measurements.

• It predicts what the next value should be (based on the
past), then updates that prediction using the new data.

• Gives more weight to reliable readings and less to noisy
ones.

• Produces a smooth, realistic trend instead of sudden
jumps.

Result
• Traditional models fuse all sensors blindly, but SELF-

CARE selectively fuses them based on context and
uses Kalman filtering to smooth predictions, which
leads to more stable and accurate stress detection.

Fig. 5: Overall performance comparison of related works using LOSO validation on wrist data 2-Class.
Results show that SELFCARE outperforms the related works, branch classifiers, and other traditional

late fusion methods in terms of both macro F1 and accuracy.

• Thanks

Back –up slides

What happens before the Kalman filter

• After context identification, the gating model chooses which branches to activate —
for example, WB1 and WB2 for wrist sensors.

• Each branch is a classifier (like a Random Forest) that gives probabilities for each stress
class.
Let’s assume it’s a 3-class problem → Baseline, Stress, Amusement.

• Example

• If the gating model selects WB1 and WB2, you get these predictions:

Branch Baseline Stress Amusement

WB1 0.6 0.3 0.1

WB2 0.5 0.4 0.1

Each branch gives a vector of probabilities, like
𝑌1 = 0.6 0.3 0.1 , 𝑌2 = 0.5 0.4 0.1

What the Kalman filter receives

• The inputs (measurements) to the Kalman filter are these probability
vectors from all selected branches.
So for each time segment (e.g., every 60 seconds of sensor data), the Kalman
filter gets something like:

• 𝑧 𝑘 = 𝑌1​, 𝑌2​, … , 𝑌𝑛​

• where each 𝑌𝑖is a probability vector from one branch.

What the Kalman filter does
• Predict step:

• It predicts what the class probabilities should be now based on the previous time step.
• Example: if at the last moment the final stress probabilities were [0.5, 0.4, 0.1],

it expects something similar this time (stress doesn’t change instantly).
• Update step:

• It takes the new branch outputs (z(k)) and updates the prediction.
• It gives more weight to branches that are more consistent with the previous state (less

noise).
• It gives less weight to sudden outliers or contradictory predictions.

• Output (state):
• The Kalman filter produces the fused, smoothed probability vector:

• 𝑥 𝑘 ∣ 𝑘 = 𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑃𝑠𝑡𝑟𝑒𝑠𝑠 𝑃𝑎𝑚𝑢𝑠𝑒𝑚𝑒𝑛𝑡

• That becomes the final stress prediction for that time segment.

 example (numerical)

• At time t₁
• WB1 → [0.6, 0.3, 0.1]
• WB2 → [0.5, 0.4, 0.1]
• Kalman output → [0.55, 0.35, 0.1]

• At time t₂
• WB1 → [0.1, 0.8, 0.1] (maybe noise spike)
• WB2 → [0.4, 0.5, 0.1]
• (it doesn’t jump to 0.8 stress immediately)
Kalman output → [0.45, 0.45, 0.1]

• At time t₃
• WB1 → [0.2, 0.7, 0.1]
• WB2 → [0.3, 0.6, 0.1]
• Kalman output → [0.35, 0.55, 0.1] (gradually increasing — smooth transition)

	Slide 1: Stress Detection using Context-Aware Sensor Fusion from Wearable Devices
	Slide 2: Background & Limitations of Existing Stress Detection Methods
	Slide 3: Why Context-Aware Sensor Fusion Is Needed
	Slide 4: Contributions
	Slide 5: Problem Formulation – Need for Adaptive Sensor Selection
	Slide 6: Overview of the SELF-CARE Framework
	Slide 7: Preprocessing – Signal Preparation
	Slide 8: Context Identification
	Slide 9: Context Identification
	Slide 10: Context Identification
	Slide 11: Branch Classifiers – Specialized Sensor Models
	Slide 12: Late Fusion – Kalman Filter
	Slide 13: Kalman Filter
	Slide 14: Result
	Slide 15
	Slide 16
	Slide 17: What happens before the Kalman filter
	Slide 18: What the Kalman filter receives
	Slide 19: What the Kalman filter does
	Slide 20: 🔍 example (numerical)

