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Background & Limitations of Existing Stress
Detection Methods

* Wearable health devices are increasingly used for stress detection, relying on multiple physiological sensors
(e.g., ECG, EDA, EMG, BVP, TEMP).

» Stress detection methods face two major challenges:
* Lack of robustness — sensor measurements are noisy and degrade model performance.
* Lack of adaptation - static model architectures cannot adjust to changing sensing conditions (the noise context).

» Stress classification techniques:
* Deep learning models can capture temporal patterns in sensor data.
* Classical machine learning models are more commonly used in stress detection.

* Classical models are simpler and less computationally demanding, making them better suited for on-device
deployment in wearable systems.

* Limited coverage: Single sensor modalities capture only part of the stress response.
» Static fusion: Combining all sensors without context can worsen accuracy.

« [.J Gap: A context-aware, adaptive fusion framework is needed to dynamically select reliable sensors
based on their noise context.



Why Context-Aware Sensor Fusion Is Needed

The context of noise on sensors varies depending on the location of the wearable device.
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Sensor noise varies by device location - Motion affects wrist sensors, while muscle contractions affect chest sensors.

Blind fusion can mislead the model
= A context-aware fusion approach is needed to adapt to changing noise conditions.



Contributions

* Introduced SELF-CARE
* ageneralized selective sensor fusion framework for stress detection from
wearable devices.
* Proposed context identification
* models the noise context (motion for wrist, muscle contraction for chest)
to adaptively select reliable sensors.
* Developed a novel late-fusion method

* uses a Kalman filter to incorporate temporal dynamics and improve
classification stability.



Problem Formulation — Need for Adaptive
Sensor Selection

* The noise context varies by device location —
wrist sensors are affected by motion, chest sensors by muscle contractions.

* Fixed (static) models treat all sensors equally > performance drops when some signals are
noisy.

* The system must adaptively choose which sensors to fuse depending on the current
context.

* SELF-CARE formulates stress detection as a context-driven adaptive fusion problem,
rather than a static classification task.
* |Introduces two key modules:
* Gating model (mt): detects the current noise context from ACC (wrist) or EMG (chest).
 Selection mechanism (p): picks the best subset of models/sensors (¢p*).

* Goal: maximize stress detection accuracy by using only the most reliable sensors at each
moment.



Overview of the SELF-CARE
Framework

* Goal: Detect stress adaptively by selecting the most reliable sensors
based on noise context.
e Step 1 - Preprocessing:
eFilter raw signals to reduce noise and align data across sensors.
e Step 2 - Context Identification:
eExtract features from motion (ACC) or muscle activity (EMG).
*Gating model decides which sensor combinations (branches) to
use.
e Step 3 - Classification:
e Each branch (set of sensors) has its own ML classifier (Random
Forest / AdaBoost).
e Step 4 - Fusion via Kalman Filter:
eCombines outputs from selected branches.
e|ncorporates temporal dynamics for smoother, more accurate
stress prediction.
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: _ * Removes noise from raw physiological signals using filters (e.g.,
Preprocessmg Butterworth, FIR, Savitzky-Golay).

Slgnal Pl'epa ration e Standardizes data collected from multiple sensors (chest and wrist).

e Segments signals into fixed time windows (e.g., 60 s with 5 s overlap)
for model input.

e Enhances signal quality so later modules can extract meaningful
physiological features.

* Ensures all sensors are time-aligned for accurate feature correlation

and fusion.
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* Goal: Detect the current noise context (motion or
muscle activity) to decide which sensors are reliable.

Context
Identification . ::I:]F;l;‘:) Raw sensor signals (ACC for wrist, EMG for
* Output: The best sensor branch(es) to use for stress
detection.

eMain Components:
1.Feature Extraction
2.Gating Model (1)
3.Performance—-Computation Trade-off (0)
4.Early Fusion ()
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1. Feature Extraction
* Extracts ACC (wrist) or EMG (chest) features to capture motion or muscle

C o nteXt activity.

* Models the noise context, not stress itself.
Identification * Provides input to the gating model for sensor selection.
* Other sensor features are extracted after the gating decision.
2. Gating Model ()

* Decision Tree predicts which sensor branch is most reliable.
 Uses ACC/EMG features as input.
* Wrist: chooses among 3 Random Forest branches (WB1, WB2, WB3).

* Chest: chooses among 5 AdaBoost branches (CB1, CB12, CB14, CB24, and CB27
for 3-class; CB5, CB7, CB9, CB13, and CB20for 2-class).

* Lightweight & adaptive — enables real-time context-aware selection.
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3. Performance-Computation Trade-off (8)

Context * Balances accuracy vs. device efficiency.

« d €[0, 1] determines how many branches are selected:

o go ° e 5=0: lv the top- babilitv b h (fast, |
Identlflcatlon power?.ny e top-probability branch (fast, low

* Higher 6: more branches included (higher accuracy,
more computation).

4. Early Fusion ()

* For each selected branch, features from its sensors are
concatenated into a single vector.

* These fused features are then passed to their branch
classifiers (e.g., Random Forest, AdaBoost).
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Branch Classifiers — « Each branch (B4, B, ..., B,) is a separate classifier trained on a

. ue specific sensor combination.
Specialized Sensor

Models « Wrist devices: use Random Forest classifiers.
« Chest devices: use AdaBoost classifiers.

« Each branch predicts the stress class (baseline/ stress/ amusement).

« The gating model activates one or more branches based on the
detected context.

» These outputs are later fused using the Kalman filter for the final
stress prediction.
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« Combines outputs from all selected branch classifiers.

Late Fusion - * Uses Kalman filtering to model temporal dynamics —
. considers how stress levels evolve over time.
Kalman Filter

* Performs prediction and measurement update steps to
refine class probabilities.

* Applies thresholding to handle noisy or uncertain
predictions.

* Produces a final fused classification that is smoother and
more accurate than simple voting.

{ . v |
| S Fllter. Class Measurement i
{i* Tetpora: Gynamics Prediction Update '
| » Thresholding - i
i » Fuses predictions Y |Fused classification |+ :
s e O e e S R /



Kalman Filter

Used when we have noisy or uncertain measurements.

It predicts what the next value should be (based on the
past), then updates that prediction using the new data.

Gives more weight to reliable readings and less to noisy
ones.

Produces a smooth, realistic trend instead of sudden
jumps.
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Result

* Traditional models fuse all sensors blindly, but SELF-
CARE selectively fuses them based on context and
uses Kalman filtering to smooth predictions, which
leads to more stable and accurate stress detection.
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Fig. 5: Overall performance comparison of related works using LOSO validation on wrist data 2-Class.
Results show that SELFCARE outperforms the related works, branch classifiers, and other traditional

late fusion methods in terms of both macro F1 and accuracy.
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What happens before the Kalman filter

* After context identification, the gating model chooses which branches to activate —
for example, WB1 and WB2 for wrist sensors.

 Each branch is a classifier (like a Random Forest) that gives probabilities for each stress
class.

Let’s assume it’s a 3-class problem > Baseline, Stress, Amusement.
« & Example

* Ifthe gating model selects WB1 and WB2, you get these predictions:

Branch Baseline Stress Amusement
WB1 0.6 0.3 0.1
WB2 0.5 0.4 0.1

Each branch gives a vector of probabilities, like
Y; =[0.600.3-0.1],Y, = [0.5-0.4-0.1]



What the Kalman filter receives

* The inputs (measurements) to the Kalman filter are these probability
vectors from all selected branches.
So for each time segment (e.g., every 60 seconds of sensor data), the Kalman
filter gets something like:

« z(k) ={Y1,Y2,..,Yn}

* where each Y;is a probability vector from one branch.



What the Kalman filter does

* Predict step:
* |t predicts what the class probabilities should be now based on the previous time step.

 Example: if at the last moment the final stress probabilities were [0.5, 0.4, 0.1],
it expects something similar this time (stress doesn’t change instantly).

 Update step:
* |t takes the new branch outputs (z(k)) and updates the prediction.

* |t give)s more weight to branches that are more consistent with the previous state (less
noise).

* It gives less weight to sudden outliers or contradictory predictions.

* Output (state):
* The Kalman filter produces the fused, smoothed probability vector:

* x(k | k) = [Pbaseline'Pstress' Pamusement]

 That becomes the final stress prediction for that time segment.



&, example (numerical)

* Attime t,
- WB1-~>[0.6,0.3,0.1]
- WB2-~>[0.5,0.4,0.1]
 Kalman output > [0.55, 0.35, 0.1]

* Attime t,
* WB1-~>[0.1, 0.8, 0.1] (maybe noise spike)
- WB2-~>[0.4, 0.5, 0.1]
* (itdoesn’tjump to 0.8 stress immediately)
Kalman output > [0.45, 0.45, 0.1 ]

* Attime t,
- WB1-~>[0.2,0.7,0.1]
« WB2-~>[0.3, 0.6, 0.1]
* Kalman output > [0.35, 0.55, 0.1] (gradually increasing — smooth transition)
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