
Saman Khamesian                                                                                          07/23/2025

AutoEncoder-based Detection of Insulin Pump 
Faults in Type 1 Diabetes Treatment

IEEE Journal of Biomedical and Health Informatics (JBHI)  
Published: Feb 2025



❖ Patients with T1D depend on lifelong insulin therapy to keep blood 
glucose (BG) levels within a healthy range.


❖ Technological advances, such as CGM and insulin pumps (CSII), 
have improved T1D management by providing real-time glucose 
readings and automated insulin delivery.


❖ However, these devices are still prone to malfunctions!
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❖ What is Insulin Pump Faults (IPFs)? 

❖ IPFs = Malfunctions that stop or reduce insulin delivery without the patient 
being immediately aware.


❖ Examples: Infusion set occlusions, kinks in the catheter, or hardware/
software errors that stop basal or bolus insulin delivery.


❖ Why detecting IPFs is hard? 

❖ Insulin effect is delayed (~45 min), so BG looks normal at first.


❖ At night, faults are more dangerous since the patient is asleep.


❖ Some pumps raise alarms, but many “silent occlusions” go undetected.

INTRODUCTION

3



❖ Why detecting IPFs is important? 

❖ Studies: 33–50% of patients experience undetected faults.


❖ Detecting IPFs early is critical for safety and preventing long-term damage.


❖ They addressed the problem of the real-time IPF detection by: 

❖ Developing a deep learning approach 


❖ Based on a recurrent auto-encoder for the automatic feature extraction, 


❖ And a random forest classifier
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❖ Framework Overview 

❖ Steps: 

1. Data Preparation.


2. Feature Extraction with AE


3. Anomaly Detection with RF
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❖ Use an LSTM-based Auto-encoder (AE) to automatically extract 
meaningful, low-dimensional features from the multivariate time series.


❖ Learn normal patterns of glucose dynamics without manual feature design.


❖ The input of the encoder part is the sequence of CGM, IOB and COB 
defined as  where each vector at time 
t is  

Xenc
t = [xt−L+1, xt−L+2, …, xt] ∈ ℝ3×L

xt = [CGM(t), IOB(t), COB(k)]
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❖ How it works? 

❖ The AE is trained to reconstruct the input sequence as accurately 
as possible.


❖ The encoder compresses the input sequence into a latent 
representation (16 features), which captures the essential 
dynamics.


❖ After training, the decoder is discarded, and the encoder is used as a 
feature extractor.
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❖ Extracted features from the encoder are fed to a Random Forest 
(RF) to classify each sequence as normal or faulty.


❖ RF outputs probabilities for both classes and raises an alert if 
the fault probability exceeds a tuned threshold.
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❖ The optimal threshold  minimizes:





❖ If the probability ≥  , the sample is classified as faulty.


❖ This threshold obtained during the training phase using a simple 
grid search.

thropt

J(thr) = (1 − Recall(thr))2 + (FP/day(thr))2

thropt
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❖ Simulator: UVA/Padova T1D Simulator (FDA-accepted) — 
generates realistic BGL responses to insulin & carbs.


❖ Data: 2 synthetic datasets:


✓ 100 subjects × 3 months.


✓ Meals at random times with random carbs.


✓ Basal insulin: MPC controller.


✓ Bolus insulin: patient-estimated carbs.


✓ Measurement every 5 minutes (CGM noise modeled)


✓ Dataset 2: 1 nocturnal fault/month → simulated by stopping insulin delivery 
(basal & bolus) completely for 6 hours at night (midnight–6AM).

DATASET

10



DATASET

11



❖ True Positive (TP): Alarm during a fault.


❖ False Negative (FN): No alarm during a fault.


❖ False Positive (FP): Alarm without fault. 

❖ FP/day: False positives per day.


❖ Detection delay: Time from fault start to alarm.


❖ Recall (Sensitivity): r =
TP

TP + FN
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❖ Figure 2 reported the output of the AE where the reconstructed inputs are 
shown together with the original signals during 6 monitoring hours of a 
subject in the training set.
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❖ The left panel shows the 16 latent features extracted by the encoder, which 
diverge sharply from normal patterns during a fault.


❖ The right panel shows the Random Forest’s output probabilities, where the 
fault probability rises and crosses the threshold, triggering an alert.
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❖ They employed 5-fold cross-validation:


❖ Dataset is randomly partitioned into 5 
equally sized folds


❖ Each fold is used as a test set once


❖ The remaining four folds are used for 
training.


❖ This process is repeated 5 times, with each 
fold acting as the test set exactly once.


❖ Their approach is able to recognize the 90% 
of the IPF on average while generating 
about 4 false alarms in 3 months.



❖ On average, the algorithm detects a fault in ~220 minutes. 

❖ This delay is similar to clinical studies, where detection can take 
up to 4 hours. 

❖ In reality: 

❖ If you have accurate pump logs, you can detect the fault 
immediately because the log shows “no insulin delivered.”


❖ But if you only look at blood glucose (BGL), you’ll notice the 
effect only ~2 hours later, because insulin already in the body 
keeps working for a while.
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Thank you for your attention


