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Introduction

• Many people struggle with healthy eating.

• Challenges:

✓ Calculating calories and nutrients

✓ Planning balanced meals every day

✓ Lack of nutrition knowledge

✓ Finding recipes for available ingredients

• These barriers contribute to poor long-term diet adherence.
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Introduction

• Limitations of Existing Systems:

✓ Require too much user input.

✓ Don’t support food culture.

✓ Don’t adapt to ingredient availability.

✓ Often recommend single food items, not full meals.

✓ Lack of scalability or practicality for everyday use.
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Introduction

• What is NutriGen?

▪ A system that generates personalized meal plans.

▪ Built using large language models (LLMs).

▪ Makes recommendations based on your:

• Preferences

• Restrictions

• and calorie goals.
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Large Language Model?

A deep learning model trained on 

vast text data to understand and 

generate human-like language. It 

can summarize, translate, answer 
questions, and create text.



Methodology

6

1) Collects input from users (food 

habits, goals, restrictions).

2) Builds a personalized nutrition 

database.

3) Uses LLMs to generate 

complete meal plans.

4) Includes recipes, portion sizes, 
and calorie counts.

How NutriGen Works?



Input Data Collection
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• Accepts data via:

▪ Image-based food logging (with ML and OCR).

▪ Manual text or voice input (with NLP).

▪ Third-Party applications (MyFitnessPal)

• Combines user input with trusted sources (e.g., USDA database).



Prompt Engineering
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• Once the personalized nutrition database is ready, we 

construct a structured prompt that guides the language model 

to generate targeted meal plans.

𝑃 =  { 𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑇𝑡𝑎𝑠𝑘 , 𝑂𝑜𝑢𝑡𝑝𝑢𝑡}

User's dietary profile: 
• Food Intake history,

• Preferences,

• Constraints.

Task instruction:
• Generate meal plans

• Matching calorie/macronutrient 

targets)

Desired output format:

• Structured meal plans



Prompt Engineering
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Input: 

Calories/Micronutrition’s Targets

It can also include preferences/constraints.

Input: Food Intake history

Task Instruction

Output Format



Experimental Setup
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• We designed a system to generate 10 diverse and plausible 

daily food intake profiles using a set of 200 randomly selected 

meals from the USDA dataset.

This box presents a sample nutrition profile with predefined 

food items and nutritional targets.

Implementation and Dataset are available at

https://github.com/SamanKhamesian/NutriGen



Experimental Setup
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• In our experimental evaluations, we selected several 

advanced language models from leading organizations:

and DeepSeek-V3

OpenAI

GPT-4o

GPT-4o Mini

GPT-3.5 Turbo

Google Gemini

Gemini 2.0 Flash Exp

Gemini 1.5 Pro

Anthropic

Claude 3.5 Sonnet

Claude 3.5 Haiku

Meta

Llama 3.1-70B

Llama 3.1-8B



Results

12

• To evaluate the computational efficiency of 

each model, we measured the total 

processing time required to generate 10 

outputs.

• As expected, smaller and optimized 

models such as GPT-3.5 Turbo, Gemini 

2.0 Flash, and Claude 3.5 Haiku 

demonstrated the fastest processing times.

Processing Time Comparison



Results
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Reported Nutritional Values vs. USDA Dataset

• We examined the accuracy of the nutrition facts in the generated meal 

plans. Each model was tasked with generating 3 meal plans per input.

• We calculated the Mean Absolute Error (MAE) between reported total 

calories per input and USDA reference values.



Results
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Adherence of Meal Plans to User-Specified Targets

• We evaluated how closely each model’s meal 

plans matched user-specified calorie targets.

• For each input, we compared the average total 

calories of generated meal plans to the defined 

target value.

Parameter Description

P Items per meal plan

N = 10 number of input profiles

M = 3 meal plans per input

𝐶𝑎𝑐𝑡𝑢𝑢𝑎𝑙 (𝑖,𝑗,𝑘) calorie content of item k in meal plan j for input i

𝐶𝑡𝑎𝑟𝑔𝑒𝑡, 𝑖 target calories for input i



Limitations and Future Works
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Current Limitations:

• Output token limits caused 

incomplete meal plans

• Calorie estimates were sometimes 

inconsistent

• Simulated user data may limit 

generalizability

Future Directions:

• Integrate a ChatBot for 

interactive, user-driven updates

• Use multimodal LLMs for food 

image analysis.

• Support multiple languages
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