

NutriGen: Personalized Meal Plan Generator Leveraging Large Language Models to Enhance Dietary and Nutritional Adherence

Saman Khamesian*, Asiful Arefeen, Stephanie M. Carpenter, Hassan Ghasemzadeh

Embedded Machine Intelligence Lab Arizona State University

ghasemzadeh.com

47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

Agenda

- Introduction
- Methodology
 - Input Data
 - Prompt Engineering
- Experiments
 - Dataset
 - Selected Models
- Results
- Limitations and Future Works

Introduction

- Many people struggle with healthy eating.
- Challenges:
 - ✓ Calculating calories and nutrients
 - ✓ Planning balanced meals every day
 - ✓ Lack of nutrition knowledge
 - ✓ Finding recipes for available ingredients

• These barriers contribute to **poor long-term diet** adherence.

Introduction

- Limitations of Existing Systems:
 - ✓ Require too much user input.
 - ✓ Don't support food culture.
 - ✓ Don't adapt to ingredient availability.

- ✓ Often recommend single food items, not full meals.
- \checkmark Lack of scalability or practicality for everyday use.

Introduction

- What is NutriGen?
 - A system that generates **personalized meal plans**.
 - Built using large language models (LLMs).
 - Makes recommendations based on your:
 - Preferences
 - Restrictions
 - and calorie goals.

Large Language Model?

A deep learning model trained on vast text data to understand and generate human-like language. It can summarize, translate, answer questions, and create text.

Methodology

How NutriGen Works?

- 1) Collects input from users (food habits, goals, restrictions).
- 2) Builds a personalized nutrition database.
- 3) Uses LLMs to generate complete meal plans.
- 4) Includes recipes, portion sizes, and calorie counts.

Input Data Collection

- Accepts data via:
 - Image-based food logging (with ML and OCR).
 - Manual text or voice input (with NLP).
 - Third-Party applications (MyFitnessPal)
- Combines user input with trusted sources (e.g., USDA database).

Prompt Engineering

 Once the personalized nutrition database is ready, we construct a structured prompt that guides the language model to generate targeted meal plans.

User's dietary profile:

- Food Intake history,
- Preferences,
- Constraints.

Task instruction:

- Generate meal plans
- Matching calorie/macronutrient targets)

Desired output format:

• Structured meal plans

Prompt Engineering

User's goal is to create a meal plan with:

- Total calories: {total_calories} kcal.
- Total protein: {target_protein} g.
- Total sugar: {target_sugar} g.

The plan must include:

- Breakfast, lunch, dinner, and snacks.
- The calorie count for each meal (e.g., "Breakfast: 400 kcal").
- At the end of each meal plan option, provide the total calories, total fat, total protein, and total carbohydrate.
- For each meal component, specify portion sizes, including the number of items or volume (e.g., "1 Kit Kat bar (45g)," "1 hamburger with a 150g beef patty, bun, and lettuce").
- Provide a short recipe for each item, detailing how it can be prepared (e.g., "Grill the patty for 5 minutes, then assemble with lettuce, tomato, and a bun").

Provide three different meal plan options for diversity.

- Use familiar dishes instead of listing individual food items. For example, use "hamburger" instead of "150 grams of meat with bun and lettuce."
- Ensure the plan adheres to the user's preferences and restrictions and meets the specified targets while maintaining a balanced nutritional profile.

Input:

Calories/Micronutrition's Targets

It can also include preferences/constraints.

Input: Food Intake history

Here are the available items: {menu_input}

Experimental Setup

 We designed a system to generate 10 diverse and plausible daily food intake profiles using a set of 200 randomly selected meals from the USDA dataset.

```
Food_Barbequeue_Lays = 1.0
Food_Garden_Pizza = 1.0
Food_Milano_double_chocolate = 1.0
Food_baked_cheddar_ruffles = 1.0
Food_beef_angus_burger_patty = 1.0
Food_chocolate_milkshake = 1.0
Food_eggs_benedict = 0.5
Food_tortilla_chips = 1.0
calories = 1573.25
protein = 54.0
sugar = 58.3
```

This box presents a sample nutrition profile with predefined food items and nutritional targets.

Implementation and Dataset are available at https://github.com/SamanKhamesian/NutriGen

Experimental Setup

 In our experimental evaluations, we selected several advanced language models from leading organizations:

and DeepSeek-V3

Results

Processing Time Comparison

- To evaluate the computational efficiency of each model, we measured the total processing time required to generate 10 outputs.
- As expected, smaller and optimized models such as GPT-3.5 Turbo, Gemini
 2.0 Flash, and Claude 3.5 Haiku demonstrated the fastest processing times.

Total Processing Time per Model

Results

Reported Nutritional Values vs. USDA Dataset

	Input 1	Input 2	Input 3	Input 4	Input 5	Input 6	Input 7	Input 8	Input 9	Input 10
Claude 3.5 Haiku	570.69	124	88	103.5	-	75	76.75	100	83	113
Claude 3.5 Sonnet	138.09	124	88	105	96	75	77	96	83	113
DeepSeek V3 [22]	138.09	96.6	88	-	-	-	-	100	82.84	113
Gemini 1.5 Pro [23]	588	173.59	87.75	153.5	445.5	75	76.75	96	83	52.59
Gemini 2 Flash [23]	589.33	173.59	87.75	153.5	445.5	75	103.41	96	83	48
GPT-3.5 Turbo [25]	138.09	73.59	37.75	53.5	45.5	25	26.75	46	32.84	62.59
GPT-40 [24]	50	24	38	45	563	41.6	50	36	74.6	52.59
GPT-40 Mini	60.03	27.5	50	50	161.66	55	26.75	47.33	35	53.33
Llama 3.1 8B [21]	88.09	58.33	50	60	46	58.33	26.75	-	50	43.33
Llama 3.1 70B [21]	45	60	50	50	46.66	40	48.33	46	50	63

- We examined the accuracy of the nutrition facts in the generated meal plans. Each model was tasked with generating 3 meal plans per input.
- We calculated the **Mean Absolute Error (MAE)** between reported total calories per input and USDA reference values.

Results

Adherence of Meal Plans to User-Specified Targets

- We evaluated how closely each model's meal plans matched user-specified calorie targets.
- For each input, we compared the average total calories of generated meal plans to the defined target value.

Parameter	Description				
Р	Items per meal plan				
N = 10	number of input profiles				
M = 3	meal plans per input				
$C_{actuual(i,j,k)}$	calorie content of item k in meal plan j for input i				
C _{target, i}	target calories for input i				

Model	MAE	MAE (%)	
Claude 3.5 Haiku	128.23	8.99	
Claude 3.5 Sonnet	99.16	4.85	
DeepSeek V3 [22]	190.61	4.85	
Gemini 1.5 Pro [23]	182.16	10.44	
Gemini 2 Flash [23]	179.16	9.74	
GPT-3.5 Turbo [25]	54.16	3.68	
GPT-40 [24]	189.76	13.47	
GPT-40 Mini	329.06	24.67	
Llama 3.1 8B [21]	34.14	1.55	
Llama 3.1 70B [21]	109.21	8.08	

$$ext{MAE} = rac{1}{N}\sum_{i=1}^{N} \left| rac{1}{M}\sum_{j=1}^{M}\sum_{k=1}^{P} c_{ ext{actual},i,j,k} - C_{ ext{target},i}
ight|$$

Limitations and Future Works

Current Limitations:

Future Directions:

Output token limits caused incomplete meal plans

- Integrate a ChatBot for interactive, user-driven updates
- Calorie estimates were sometimes Use multimodal LLMs for food inconsistent image analysis.
- Simulated user data may limit generalizability

Support multiple languages

Arizona State University

Thank You!

Saman Khamesian <u>s.khamesian@asu.edu</u> https://github.com/SamanKhamesian

Hassan Ghasemzadeh hassan.ghasemzadeh@asu.edu https://ghasemzadeh.com/

