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Motivation:

* Predicting BGLs due to various factors beyond insulin infusions,
iIncluding meal intake, physical activity, sleep patterns, and
emotional states. This paper focus on insulin infusions and meal
intake.

* The BGLs prediction models in the literature, lack
interpretability, rendering them as black boxes for ML scientists,
healthcare practitioners, and patients.



Related Works

TABLE |
PREDICTION PERFORMANCE COMPARISON IN CURRENT LITERATURE. PH
[PREDICTION HORIZON], RMSE [ROOT MEAN SQUARED ERROR]

PH RMSE

Study Type of inputs (min) (mg/dL)

CGM data, statistical attributes,
Annuzzi et al. [10]  insulin,
meal related information

30 8.0 £ 0.6
60 213 £ 16

CGM data, insulin, 30 18.8 + 2.3
Daniels et al. [21] physiological signals, 60 31.8 & 39
meal intake 120 472 + 4.6

30 6.6 £ 24

Alfian et al. [23] CGM data, statistical attributes 60 153 + 5.9

Jaloli et al. [27] CGM data, insulin, 30 98 + 1.2
' carbohydrates 60 183 + 2.8
CGM data, insulin, 30 193 + 2.8

Lietal [31] carbohydrates 60 31.8 £ 3.5




Novelty:

* Impact of input features on BGLs prediction using Explainable Al

* Features used for the BGL prediction model are:

* BGL values,
* Insulin administered during mealtime
* Meal-related attributes

* Develop three distinct prediction models, with PHs of 15 min, 60
min, and 120 min



Proposed method

e BGL values measured each 5 min from 30 min
before the meal until the mealtime

* 15-step sliding window for smoothing the BGLs
trends
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Insulin Measurement:

Micro boluses administered by the AP system in the 3h before the meal were summed
to obtain a single quantity that takes into account the amount of basal insulin.




Method

* Proposed 3 Feed Forward Neural Networks (FFNN) to investigate the
influence of specific features on BGLs prediction for different PHs (15
min, 60 min, and 120 min) after a meal

* The FFNNs took as input features:

30 min window of BGLs (Gly_30b - Gly_0) along with associated statistical
attributes: minimum (Gly_min), maximum (Gly_max), mean (Gly_mean),
standard deviation (Gly_std), peak-to-peak difference (Gly_ptp), median
(Gly_median), kurtosis (Gly_kurt), and skewness (Gly_skew)

* Information regarding the insulin dosages: — manually-administered bolus
(MB) of insulin (Bolus) at mealtime; — cumulative sum of micro boluses delivered
by the closed-loop system worn by patients in the three-hour interval preceding
the meal (Ins_history), as an absolute measure of the system’s insulin delivery

 Meal-related information: — energy intake (Energy); — carbohydrates (Carbo),
glycemic index (Gl), glycemic load (GL); - Proteins; - Fibers; — Lipids,
monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA),
saturated fatty acid (SAFA), Cholesterol.



Method

* Three separate models were derived, specifically tailored to predict at
distinct PHs: 15 min, 60 min, and 120 min.

 Each model was validated by using Leave-One-Subject-Out Cross-Validation
(LOSO-CV) strategy.

TABLE I
SEARCH SPACE ADOPTED DURING THE GRID SEARCH FOR TUNING
HYPERPARAMETERS
Tuned Hyperparameters Search Space
number of hidden layers {1, 2, 3}
number of neurons in each layer {8, 16, 32, 64, 128}
optimization aleorithm {Stochastic Gradient Descent (SGD) [55],
P & Adam [56]}
{Rectified Linear Unit (ReLU) [57],
activation function hyperbolic tangent function (tanh),
Variable Activation Function (VAF) [58]}
learning rate {0.0001, 0.0005, 0.001, 0.005, 0.01}

weight decay parameter (penalty L2) {0.0001, 0.001, 0.01}




Method

* SHAP is a method to explain individual predictions, providing
relevance scores to each input feature. This methodology utilizes
Shapley values, derived from coalitional game theory, to attribute
the contribution of each feature to the final prediction. The basic
principle of SHAP technique is to decompose the model output
Into the cumulative impacts of individual features.

* For complex models such as DNNs, the adopted SHAP method
(i.e., Kernel SHAP) relies on weighted linear regression to compute

the importance of each feature.



Method
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where *3 denotes the presence (1) or absence (0) of the fea-
ture j: ¢; 1s the Shapley value representing the relative feature
contribution; and ¢ is the base value when all input features are
absent (0).
* To estimate the global relevance of each input on the model’s
outcome, it is possible to compute the absolute Shapley values of

feature j were averaged across the data.




Results

PH (min)

RMSE (mg/dL)
(mean + std)

Selected Hyperparameters

number of hidden layers = 2
number of neurons = {32,16}
optimization algorithm = Adam

15 2.53 £ 043 activation function = tanh
learning rate = 0.0001
L2 penalty = 0.001
batch size = 32
number of hidden layers = 3
number of neurons = {32,16,8}
optimization algorithm = Adam
60 2474 £ 4.27 activation function = tanh
learning rate = 0.0001
L2 penalty = 0.01
batch size = 32
number of hidden layers = 3
number of neurons = {32,16,8}
optimization algorithm = Adam
120 50.15 £ 7.70 activation function = tanh

learning rate = 0.0001
L2 penalty = 0.01
batch size = 16
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Boxplots for feature importance analysis at (a) 15 min, (b) 60 min, and (c) 120 min after mealtime. Each feature bar corresponds to the
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Fig. 3.  Best-fold summary plots of SHAP values at (a) 1_5 min, (b) 60 _mir_1,_ and (c) 120 min after mea_ltime for a single subject. Features are listed
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Best-fold correlation matrices between SHAP values corresponding to each feature pair at (a) 15 min, (b) 60 min, and (c) 120 min after



