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Introduction:
• The impressive success of deep learning in various domains can, in large part, be explained 

by the availability of large labeled datasets.

• Challenges of labeling EEG signals:

• Self-supervised learning (SSL) is an unsupervised learning approach that learns 
representations from unlabeled data, exploiting the structure of the data to provide 
supervision.

Accurate physiological data annotations can be costly, time-
consuming, or impossible.

Noise and complexity make EEG signal interpretation difficult.

Understanding participants' thoughts or actions in experiments is challenging, 
hindering accurate labels.



Self-Supervised Learning (SSL):
• SSL comprises a ‘pretext’ and a ‘downstream’ task. 

• The downstream task is the main task of interest, often with limited or no annotations.

• The pretext task must be related to the downstream task to use similar representations.

• In the pretext task, annotations are generated using only the unlabeled data to capture the 
general representation of the data.

• Apart from facilitating the downstream task and/or reducing the number of annotated examples 
necessary, self-supervision can also uncover more general and robust features than those 
learned in a specialized supervised task.

• This paper introduces two temporal contrastive learning tasks that we refer to as “relative 
positioning” and “temporal shuffling”.



Self-supervised learning pretext tasks for EEG
• Relative positioning (RP):

• The relative positioning task is designed to learn the structure of EEG data by comparing pairs of time windows 
(segments of EEG data).

• The EEG data is divided into smaller segments called time windows with a fixed duration T.
• N pairs of windows from the EEG data are created and labeled:
• The first window 𝑥! is referred to as the ‘anchor window’.

• A feature extractor ℎΘ is applied to each window 𝑥! and 𝑥!" to obtain their feature representations.
• The contrastive module 𝑔𝑅𝑃 calculates the element-wise absolute difference between the feature 

representations of the two windows.

• ignore window pairs where 𝑥!"falls outside of the positive and negative contexts of the anchor window 𝑥!.



• Temporal shuffling(TP):
• aimed at learning representations of EEG data by examining the order of time windows.

• In ‘temporal shuffling’ (TS), they sample two anchor windows , 𝑥t and 𝑥tʹʹ from the positive context, and a third window 
𝑥tʹ that is either between the first two windows or in the negative context. 

• construct window triplets that are either temporally ordered (𝑡 < 𝑡′ < 𝑡′′) or shuffled (𝑡 < 𝑡′′ < 𝑡′ 𝑜𝑟 𝑡′ < 𝑡 < 𝑡′′). 
• augment the number of possible triplets by also considering the mirror image of the previous triplets, e.g. (𝑥!, 𝑥tʹ, 𝑥tʹʹ) 

becomes (𝑥tʹʹ, 𝑥tʹ, 𝑥t)

• The label 𝑦i then indicates whether the three windows are ordered or have been shuffled.

Self-supervised learning pretext tasks for EEG



Dataset and Data preprocessing:



Model Architecture for the feature extractor h 
• 1D-CNN:

• Two convolutional layers
• Two max-pool layers
• A flattening layer

• input shape: (C,T,1)
• C: the number of EEG channels.
• T: The number of data points for each segment

• Activation function: Relu

• Optimizer: 
• Adam optimizer with β1=0.9, β2=0.999 and learning rate 0.001

• Number of epochs: 300 epochs, or until the validation loss does not decrease anymore for a 
period of at least 30 epochs. 

• Batch size: 256
• Dropout: 50%



Compared Models
Baseline models Description

Random Initialization Model with random weights, not trained

Convolutional Autoencoder (AE) Encoder-decoder architecture, trained to reconstruct input:
• The encoder is similar to the feature extractor h used in the SSL tasks.
• The decoder has four convolutional layers and aims to reconstruct the input data.
• The model is trained using mean squared error as the reconstruction loss.

Purely Supervised Learning This model uses the feature extractor h from the SSL tasks.
An additional softmax layer is added to classify labeled data into one of the five sleep 
stages.

Human-Engineered Features Traditional statistical and spectral features 
• Statistical features: mean, variance, skewness, kurtosis, standard deviation, 
• Spectral features: frequency log-power bands between (0.5, 4, 8, 13, 30, 49) Hz, 

Ratios of Frequency bands, peak-to-peak amplitude, Hurst exponent, approximate 
entropy and Hjorth complexity. 

• This results in 34 features per EEG channel, which are concatenated into a single 
vector.

By using balanced accuracy (the average per class recall) for evaluation and weighted loss during training, the authors 
ensure that their model performs well across all classes.



Experiments

• Objective:  evaluate the ability of the CNN to learn the SSL tasks

• Method:
• Train the feature extractor h on the entire training set using the SSL tasks 

(Relative Positioning (RP) and Temporal Shuffling (TS)) with three sets of 
hyperparameters τpos and τneg. 

• Project labeled samples into the feature space learned by the SSL tasks.
• Train a multinomial linear logistic regression model on these features to 

predict sleep stages.

• Conclusion:

• SSL models achieved performance close to handcrafted features 
and significantly better than purely supervised models

• The SSL tasks successfully learned meaningful features from the 
EEG data, which facilitated sleep staging.

Experiment 1: SSL models learn representations of EEG signals and facilitate sleep staging



Experiments

• Objective: evaluate SSL tasks when only a small amount of labeled 
data is available. 

• Method:
• Train different feature extractors using various approaches:

• AE, RP and TS on unlabeled data; full supervision on labeled data, randomly initialized models

• Use the trained feature extractors to obtain feature vectors from the EEG data. 
• Evaluate sleep staging performance using linear logistic regression models.

• Results:
• Mass Data:

• SSL features (RP and TS) significantly outperform the purely supervised model for all data 
regimes.

• RP and TS both perform well, with RP slightly outperforming TS by a fraction of a percent in 
most cases.

• Both AE and randomly initialized models perform much worse.
• Sleep EDF Data:

• Results are similar to the MASS dataset except:
• When more than 500 labeled examples per class are available, the purely supervised model 

outperforms the SSL features.
• TS performs slightly better than RP on this dataset.

Experiment 2: SSL enables sleep staging with limited annotated data

(A) on MASS and (B) on Sleep EDF



Conclusion:

• The proposed SSL tasks, Relative Positioning (RP) and Temporal Shuffling (TS), 
effectively train feature extractors that capture meaningful EEG signal 
representations.
• Both proposed SSL tasks perform well, but RP is slightly more computationally 

efficient due to using only two windows instead of three.
• By reducing the amount of labeled data required to reach high performance, SSL 

tasks are promising alternatives to an expensive and time-consuming labeling 
process.


